
WARPLab: Multi-node Prototyping with Real Wireless

DataI

Melissa Duarte, Patrick Murphy, Christopher Hunter, Siddharth Gupta,
and Ashutosh Sabharwal1

Abstract

In this paper we present WARPLab, a framework which allows rapid proto-

typing of algorithms for wireless communications by combining the ease of

MATLAB with the capabilities of the Wireless Open-Acces Research Plat-

form (WARP). The WARPLab framework provides the software necessary

for easy interaction with the WARP hardware directly from the MATLAB

workspace. WARPLab is unique in its capabilities for being used as both a

General Purpose Processor (GPP)-Software Defined Radio (SDR) platform

and a hybrid GPP-SDR and Programable Hardware (PH)-SDR platform.

With WARPLab the user can choose to implement all of the baseband signal

processing in MATLAB, hence, enabling the use of WARP as a GPP-SDR.

The user can also choose to implement part of the signal processing in real-

time on the WARP hardware’s FPGA, hence, enabling the use of WARP as

a hybrid GPP-PH-SDR platform. This paper demonstrates the capabilities

of WARPLab by presenting examples of wireless communications algorithms

IThis work was partially supported by NSF grants CNS-0619769, CNS-0551692, and
CNS-0923479

1M. Duarte, P. Murphy, C. Hunter, S. Gupta, and A. Sabharwal are with the Depart-
ment of Electrical and Computer Engineering, Rice University, Houston, TX, 77005 USA,
e-mail: {mduarte, murphpo, chunter, sgupta, ashu}@rice.edu

Preprint submitted to Elsevier October 7, 2011



implemented using WARPLab and a detailed description of the WARPLab

architecture.

Keywords:

Software Defined Radio, Wireless Communications, FPGA, WARP.

1. Introduction

Next generation wireless communication systems are being designed to

achieve higher data rates and reliability by using novel technologies like mul-

tiple antenna schemes [1], cooperative communication [2], and cognitive ra-

dio [3]. Deployment of these technologies requires prototyping and testing for

proof-of-concept. Both industry and academia are adopting Software Defined

Radio (SDR) platforms for evaluation of novel wireless technologies because

of SDRs flexibility and programmability [4]. Two types of commonly used

SDRs are General Purpose Processor(GPP)-SDR and Programmable Hard-

ware (PH)-SDR platforms [5]. PH-SDRs are capable of implementing high

speed DSP-intensive operations, whereas performance of GPP-SDRs is more

limited since it depends on processing power of the GPP being used and the

speed and latency at which samples are transferred from Analog to Digital

Converters (ADCs) to the GPP. However, GPP-SDRs offer the benefit of

high level programming, while PH-SDRs require more specialized hardware

programming.

GNU Radio [6] and SORA [7] are examples of GPP-SDR platforms.

WARP [8] is an example of a PH-SDR platform, however, due to its flex-

ibility and extensibility, WARP can be configured as a GPP-SDR. In this

paper we present WARPLab, a framework developed for WARP which en-

2



ables the use of WARP as a GPP-SDR by allowing interaction with WARP

hardware directly from the MATLAB workspace. Using WARPLab, all the

baseband signal processing can be done offline in MATLAB and transmis-

sion and reception of RF signals can be done in real-time over-the-air using

WARP hardware. Furthermore, WARPLab gives the user the option of im-

plementing processing blocks in real-time on the WARP hardware’s FPGA.

Hence, WARPLab allows use of WARP as a hybrid GPP-PH-SDR platform

which allows FPGA implementation of time sensitive blocks and facilitates

a piecewise MATLAB-code-to-hardware flow where prototype baseband pro-

cessing can first be implemented in MATLAB code and then parts or all of

the system can be moved to an FPGA implementation.

To demonstrate the capabilities of WARPLab, we will present a detailed

description of the WARPLab architecture and three examples of our current

use of WARPLab for prototyping of multiple antenna algorithms and coop-

erative communication. The first example shows the use of WARPLab as

a GPP-SDR platform for implementation of an Alamouti system [9]. The

second and third examples demonstrate the use of WARPLab as a hybrid

GPP-PH-SDR platform for implementation of a feedback based beamforming

system and a cooperative communication system.

2. WARPLab Architecture

The basic WARPLab setup is shown in Figure 1 wherein two WARP

nodes and a host PC running MATLAB are connected to an Ethernet switch.

One host PC can control multiple nodes, as shown in Figure 2. The basic

WARPLab flow is as follows. The digital baseband samples to be transmitted

3



over-the-air are created by the user in MATLAB. The user downloads these

samples from the MATLAB workspace to transmit buffers in the WARP

nodes. The user sends, from the MATLAB workspace, a trigger to trans-

mitter and receiver nodes. Upon reception of this trigger, samples stored

in transmit buffers are transmitted over-the-air and captured in real-time.

Transmitter radios perform real-time digital to analog conversion of base-

band samples and real-time upconversion from analog baseband to analog

RF. Receiver radios perform real-time downconversion from analog RF to

analog baseband and real-time conversion from analog baseband to digital

baseband. The captured (received) digital baseband samples are stored in

receive buffers in the WARP nodes. The user reads captured baseband sam-

ples from the receive buffers in the WARP nodes to the MATLAB workspace

and then baseband samples in the MATLAB workspace are processed offline.

A
B

B

C

Figure 1: Basic WARPLab setup. A: Host PC, B: WARP node, C:Switch. The switch is

connected to the WARP nodes and the host PC via Ethernet links.

The WARPLab framework provides the following code to the user.

• WARPLab Reference Design: contains all the code (FPGA code) re-

quired to program the WARP nodes.

4



…

Figure 2: Multiple nodes can be controlled from one host PC.

• WARPLab Reference M-Code: contains MATLAB Code (M-Code)

functions that allow interaction with WARP nodes from a host PC

running MATLAB.

• WARPLab M-Code Examples: illustrate how to use the functions in

the WARPLab Reference M-Code.

The WARPLab architecture is shown in Figure 3. The rest of this section

explains the different parts of the WARPLab architecture and the code pro-

vided in the WARPLab Reference Design, Reference M-Code and M-Code

examples.

2.1. WARP Hardware

The hardware for a WARP node with four radios is shown in Figure

4. The hardware consists of a WARP FPGA board and four radio boards.

The WARP FPGA board and the radio boards were both designed at Rice

5



Ethernet

Host PC

WARPLab 
Reference 
M-Code

WARPLab 
M-Code 

Examples 

WARPLab 
User 

M-Code 

WARPLab 
Reference 

C Code

Ethernet 
MAC 
Driver

Radio 
Driver

Misc. 
Drivers

PowerPCLogic
WARPLab 
Reference 

Sysgen
AGC

Ethernet 
MAC

Radio 
Controller

Radio 
Bridges

FPGA

WARP node

Radio 1

Radio 2

Radio 3

Radio 4

Daughter 
Cards

PLBFPGA
I/O

Figure 3: WARPLab Architecture.

University. Two versions of the WARP FPGA board have been developed,

the first version (WARP FPGA board v1) is built around a Xilinx Virtex-II

Pro FPGA and the second version (WARP FPGA board v2) is built around

a more powerful Xilinx Virtex-4 FPGA. Figure 4 shows the WARP FPGA

board v1; the WARP FPGA board v2 is a newer version released in 2009.

Table 1 compares the FPGA and board resources respectively. This compar-

ison and further documentation for the WARP FPGA boards can be found

in [10].

Both versions of the WARP FPGA board have four daughter card slots.

Each slot is connected to a dedicated bank of I/O pins on the FPGA. The four

daughter card slots on the WARP FPGA board can be used to connect the

FPGA to radio boards so that a four antenna node can be easily implemented.

Daughter card slots are compatible across both versions of the WARP FPGA

board. The radio boards will be described with more detail in Section 2.6.

The WARPLab architecture is the same for both versions of the WARP

FPGA board. However, the WARPLab framework can achieve better per-

formance when the WARP FPGA board v2 is used. This is because v2 of

the FPGA board has a faster Ethernet link (enabled by the gigabit Ethernet

6



Table 1: FPGA and Board Resources

Parameter FPGA Board v2 FPGA Board v1

FPGA Device Virtex-4 FX100 Virtex-II Pro P70

FPGA Logic Slices 42k 33k

FPGA 18x18 Multipliers 160 328

FPGA 18kb Block RAMs 376 328

FPGA PowerPC Cores 2 2

FPGA Hard Ethernet 4 0

MAC Cores

Daughtercard Slots 4 4

Memory Up to 2GB Two 2MB ZBT SRAM

(DDR2 SO-DIMM Slot)

Ethernet One Gigabit (10/100/1000) One 10/100 interface

interface

Two Gigabit (1000Base-T only)

interfaces

7



Radio 1

Radio 2

Radio 4

Radio 3

FPGA

Ethernet

Figure 4: WARP node with four radios.

and hard Ethernet MAC cores) and a more powerful FPGA.

2.2. MATLAB Code

The MATLAB-Code (M-Code) consists of the WARPLab Reference M-

Code, WARPLab M-Code Examples and the user M-Code. The WARPLab

Reference M-Code is a set of M-Code functions that facilitate users’ interac-

tion with WARP nodes from the MATLAB workspace. As an example, con-

sider the ‘warplab initialize.m’ and ‘warplab writeSMWO.m’ functions which

are both part of the WARPLab Reference M-Code. The ‘warplab initialize.m’

function establishes a UDP connection with WARP nodes that have an Eth-

ernet link to the host PC, and UDP socket handles for WARP nodes become

available from the MATLAB workspace. These UDP handles, together with

other functions in the reference M-Code, simplify tasks like writing vectors of

samples from the MATLAB workspace to buffers in the WARP nodes. For ex-

8



ample, calling the function ‘warplab writeSMWO(Node handle, TxBuffer ID,

M vector)’ will write in the transmit buffer with ID ‘TxBuffer ID’ in WARP

node with handle ‘Node handle’ the samples stored in the MATLAB vec-

tor ‘M vector’. The WARPLab M-Code Examples illustrate how to use the

functions in the WARPLab Reference M-Code.

The user M-Code is the code the user writes in order to generate the

digital baseband samples to be transmitted. Using the functions in the

WARPLab reference M-Code the user can control, directly from MATLAB,

the transmission and reception of these samples in real-time RF over-the-air

using WARP nodes.

With WARPLab the user has the flexibility of transmitting narrowband

signals or wideband signals using different modulation types and coding tech-

niques. This flexibility is possible because the only requirements the digital

baseband signal (samples) created by the user M-Code must satisfy are the

following. 1) The digital baseband signal cannot have frequency components

between -30 KHz and 30 KHz. This requirement is due to the frequency

requirement of the MAXIM radio chip [11] used for RF upconversion and

downconversion. 2) The digital baseband signal cannot have frequency com-

ponents below -20 MHz or above 20 MHz. This requirement is due to the

sampling frequency of the Analog-to-Digital Converters (ADCs) and Digital-

to-Analog Converters (DACs) which is fixed to 40 MHz. 3) The amplitude

of the real part (in-phase component) of the digital baseband signal must

be between -1 and 1 and the amplitude of the imaginary part (quadrature

component) of the digital baseband signal must be between -1 and 1. This

requirement is due to the input data type requirement of DACs [12].

9



WARPLab allows transmission of any digital baseband samples that sat-

isfy the three requirements previously mentioned.

2.3. Ethernet

An Ethernet link is used for communication between the host PC and

the WARP nodes. Peter Rydesater’s open-source TCP/UDP/IP toolbox for

MATLAB [13] is used to set UDP connection with WARP nodes and send

and receive UDP packets from the MATLAB session running in the host PC.

As stated earlier, Ethernet communication is faster when using the WARP

FPGA board v2, which allows a gigabit Ethernet connection.

2.4. FPGA PowerPC Code

The code required to program the FPGA PowerPC (PPC) is provided as

part of the WARPLab Reference Design. The PPC contains the WARPLab

Reference C-code and drivers code, as shown in Figure 3. The WARPLab

Reference C-Code implements an infinite loop that is listening for Ethernet

packets. When an Ethernet packet is received, the ID (or opcode) of the

command/action to be executed is read from the received packet. Based on

this ID, the C code enters a specific case statement. When the case statement

is executed the code returns to its initial state of listening to Ethernet packets.

To illustrate with more detail how the WARPLab Reference C code works,

consider again the case in which the data stored in the MATLAB vector

‘M vector’ is to be downloaded to a buffer in a WARP node. As previously

mentioned, this can be done by calling the function ‘warplab writeSMWO(

Node handle, TxBuffer ID, M vector)’ from the MATLAB workspace. This

function call sends an Ethernet packet that contains the ‘Node handle’,

10



‘TxBuffer ID’, and ‘M vector’ information. All the WARP nodes connected

to the host PC ignore this Ethernet packet except the one that corresponds

to ‘Node handle’. This node then parses the received packet and extracts

the ‘TxBuffer ID’ field, this is the ID (or opcode) field which specifies that

the action to be executed corresponds to writing to the ‘TxBuffer ID’ buffer.

Hence, the C code enters a case statement that runs the lines of code re-

quired to execute this action. Code Example 1 shows the pseudocode for

the WARPLab Reference C Code and for the case statement that writes the

’TxBuffer ID’ buffer.

Code Example 1: Writing the TxBuffer ID

while 1 do

Listen for Ethernet packets;

if Received a valid packet then

switch Command do

case Command 1

Statements to execute Command 1;

case Command 2

Statements to execute Command 2;

case TxBuffer ID
Copy ‘M vector’ received in Ethernet packet to transmit buffer with ID equal

to ‘TxBuffer ID’;

Send acknowledgment to host PC;

. . .

case Command N

Statements to execute Command N;

11



2.5. FPGA Logic

The FPGA logic consists of hardware on-chip peripherals, e.g. Automatic

Gain Control (AGC), and logic to interface off-chip hardware peripherals, e.g.

radio daughter cards and the Ethernet connection. All hardware peripherals

are connected to the Processor Local Bus (PLB). Through memory reads and

writes, the software running on the FPGA PPC can pass values to peripherals

and vice versa.

The WARPLab Reference Sysgen Core is an on-chip peripheral that con-

tains the transmit and receive buffers that store baseband samples. This

core is built using Xilinx’s System Generator (Sysgen) tool. Transmitter

and receiver buffers in the WARPLab Sysgen Core are connected to the ra-

dio boards, as shown in Figure 5. Baseband samples stored in the transmit

buffers are read to the radio DACs in real-time. Similarly, baseband sam-

ples from the radio ADCs are written to the receive buffers in real-time.

Read/write of transmit/receive buffers is triggered by commands sent by the

user from the MATLAB session running in the host PC.

2.6. Radios

The radios are capable of targeting both the 2.4 GHz and 5 GHz ISM

bands. The radios are designed for Multiple-Input Multiple Output (MIMO)

antenna applications, guaranteeing the phase coherency of carriers generated

by chips which share a reference clock. Figure 5 shows a block diagram for the

transmitter and receiver paths for a radio board. The carrier frequency for

upconversion and downconversion and the gain of the variable gain amplifiers

can be set by the user from the MATLAB workspace using functions provided

in the WARPLab Reference M-Code.

12



PLL
Antenna
Switch RSSI

ADC I

ADC Q

DAC I

DAC Q

To Ethernet

From Ethernet

Receiver
I/Q Buffer

Transmitter
 Base-Band Amplifiers

Transmitter
 RF Amplifier

Receiver 
RF Amplifier

Radio Board
FPGA

WARPLab Sysgen Core

Upconversion

Downconversion

Concat
-enate

I/Q

Slice
I/Q

Transmitter
I/Q Buffer

Receiver
 Base-Band Amplifiers

ADC RSSI
To Ethernet

RSSI Buffer

Figure 5: Transmitter and receiver paths for one radio.

2.7. Extending WARPLab

The WARPLab Reference Design, the WARPLab Rerence M-Code, and

the WARPLab M-Code examples are all available in the WARP repository

[8]. Users are encouraged to modify the WARPLab Reference Design and

WARPLab Reference M-Code in order to meet the requirements of their

experiment. For example, if part of the signal processing requires real-time

implementation, then this processing can be implemented in FPGA logic by

modifying the WARPLab Reference Design. The WARP repository provides

tutorials and documentation to help familiarize with the tools required to

program the FPGA.

3. WARPLab Examples

In this section we present examples that highlight the two main uses of

WARPLab: WARPLab as a GPP-SDR platform and WARPLab as a hybrid

GPP-PH-SDR Platform.

13



3.1. Using WARPLab as a GPP-SDR Platform

We have used WARPLab to implement a narrowband Alamouti system

with two transmitter antennas and one receiver antenna (2 × 1 system).

Alamouti [9] is a well known multiple antenna scheme that improves reliabil-

ity in wireless systems by exploiting transmitter diversity. For the narrow-

band Alamouti implementation we used the WARP FPGA board v1. All the

baseband processing was done in the MATLAB session running on the host

PC, hence, for this experiment, the WARPLab framework was exercised as

a GPP-SDR Platform.

The experiment setup is shown in Figure 6. The basic WARPLab setup is

connected to an Azimuth channel emulator [14, 15]. Two radios at the trans-

mitter node are connected to the channel emulator which combines the two

RF signals to emulate a 2×1 wireless system. The RF output of the channel

emulator is connected to a radio at the receiver node. Two RF channels

are emulated, one from transmitter radio one to the single receive antenna

(Tx1-Rx1 channel), and another channel from the second transmitter radio

to the receiver (Tx2-Rx1 channel). The two RF channels are modeled as

independent channels. The received signal is the superposition of the sig-

nal that travels over the Tx1-Rx1 channel and the signal that travels over

the Tx2-Rx1 channel. This is the same channel model considered in [9].

During the experiment, the emulator output power was controlled from the

host PC running MATLAB. More details on the experiment conditions and

experiment results are presented and analyzed in [16]

14



Channel 
Emulator

RF In RF In

RF Out

Transmitter node

Receiver node

Tx1

Tx2

Rx1

Figure 6: Experiment Setup.

3.2. Using WARPLab as a hybrid GPP-PH-SDR Platform

Allowing the user to implement part of the signal processing in MATLAB

and part of the signal processing in the FPGA is one of the main features of

WARPLab. In this section we present two examples that take advantage of

this feature.

3.2.1. Beamforming Experiment

We implemented a narrowband 2 × 1 codebook based beamforming sys-

tem as described in [17]. This system takes advantage of transmitter diversity

and it is known to have better performance than the 2× 1 Alamouti system.

Transmission of signal x over two transmitter antennas using beamforming

vector [b1, b2] is implemented by transmitting b1x over antenna 1 and b2x

over antenna 2. In a codebook based beamforming system, the transmitter

sends a training signal to the receiver, the receiver uses the received training

15



signal to estimate the channels. Based on the channel estimates, the receiver

chooses which beamforming vector to use in order to improve the Signal to

Noise Ratio (SNR). A codebook, known at the transmitter and the receiver,

contains all the possible beamforming vectors the receiver can choose. The

receiver runs an exhaustive search over the codewords (or beamforming vec-

tors) in the codebook to find the one that results in the best SNR for the

given channel conditions. The index of the beamforming vector chosen by

the receiver is fed back to the transmitter. Finally, the payload signal is

transmitted using the beamforming vector corresponding to the index fed

back from the receiver.

The feedback delay is the time between transmission of the training signal

and transmission of beamformed payload. It has been shown that feedback

delay affects the performance of a beamforming system [18]. Implementing a

beamforming system in a PH-SDR platform will result in less feedback delay

compared to a GPP-SDR platform implementation. However, PH-SDR im-

plementation requires specialized hardware programming. Using WARPLab

it is possible to implement a beamforming system using a hybrid GPP-PH-

SDR implementation where most of the signal processing is implemented in

MATLAB and the feedback delay can be reduced by implementing part of

the signal processing in real-time in the FPGA. Below we describe how a

simple change in the WARPLab FPGA Code (WARPLab Reference Design)

allowed us to significantly reduce the feedback delay for the narrowband

beamforming experiments.

Let x denote the vector of baseband payload samples to be transmit-

ted and [b1, b2] the beamforming vector to use for transmission. If all the

16



baseband processing happens in MATLAB, then vectors b1x and b2x are

computed in MATLAB and then downloaded to the transmit buffers. For

our experiments, vector x consists of 214 samples and downloading the beam-

formed samples b1x and b2x requires a total of 1.4 s. This results in a very

large feedback delay of a total of 1.45 s. Clearly, the main cause of the large

feedback delay is the time it takes to download the beamformed vectors to

the transmit buffers.

To reduce the feedback delay we do a very simple change on the WARPLab

FPGA code: add two complex multipliers. Specifically, the path between

transmitter buffer and radios shown in Figure 5 is modified as shown in Fig-

ure 7. Since only two radios are used, we only have to add two complex

multipliers. Hence, we only have to download two complex values, namely b1

and b2, and computation of b1x and b2x happens in real-time as samples are

read from transmit buffers to radio DACs. The time it takes to download

b1 and b2 from the host PC to the transmitter node is significantly less than

the time required to download the beamformed payload vectors b1x and b2x

each consisting of 214 complex values. Consequently, adding the two complex

multipliers allows us to reduce the feedback delay from 1.45 s to 75 ms. We

note that vector x is downloaded to the tansmit buffers before transmission

of training, hence, the time required to download vector x doesn’t affect the

feedback delay.

In summary, simply moving the computation of the beamformed payload

vectors from MATLAB to real-time time allows a significant reduction in

feedback delay. The rest of the baseband signal processing (channel estima-

tion, search for beamforming vector, modulation, demodulation, etc.) is done

17



PLL
Antenna
Switch RSSI

ADC I

ADC Q

DAC I

DAC Q

To Ethernet

From Ethernet

Receiver
I/Q Buffer

Transmitter
 Base-Band Amplifiers

Transmitter
 RF Amplifier

Receiver 
RF Amplifier

Radio Board
FPGA

WARPLab Sysgen Core

Upconversion

Downconversion

Concat
-enate

I/Q

Slice
I/Q

Transmitter
I/Q Buffer

Receiver
 Base-Band Amplifiers

ADC RSSI
To Ethernet

RSSI Buffer

Complex 
Multiplier

b
From Ethernet

i

Figure 7: Modified WARPLab Reference Sysgen Core. The modification consists in adding

a complex multiplier to the transmitter path.

in MATLAB. We note that for the beamforming experiments we used the

WARP FPGA board v1, which doesn’t have a fast Ethernet interface. We

expect that feedback delay can be further reduced when implementing on the

WARP FPGA board v2 since it includes faster Gigabit Ethernet and Hard

Ethernet MAC. The results of the beamforming experiments are presented

and analyzed in [16].

3.2.2. Cooperative Communications Experiments

One of our ongoing projects is the investigation of applying the techniques

of cooperation in real communications systems. Cooperative communications

is an approach to improving the performance of a wireless system by pooling

the resources of multiple nodes. By coordinating their receptions and trans-

missions, cooperating nodes can realize performance gains similar to those

enabled by non-cooperative nodes equipped with multiple-antennas. Our

ultimate goal was the construction of a real-time cooperative Orthogonal

18



Frequency Division Multiplexing (OFDM) system, built around an FPGA

implementation of a full physical layer transceiver. But before attempting to

design the real-time transceiver, we needed to verify a few key assumptions

about the behavior of cooperating nodes, a task for which WARPLab was

ideally suited. We designed two WARPLab experiments in this effort.

Cooperative communications is often described as a distributed version

of standard MIMO communication techniques. One area where this anal-

ogy breaks down is the problem of carrier frequency offset (CFO). In a true

MIMO system, multiple antennas on a transmitter share the same clock that

generates their carriers. In cooperative applications, devices may be topo-

logically separated and do not have the luxury of sharing this common clock

source. In our first experiment, we used WARPLab to show that the CFO

problem can be solved passively in amplify-and-forward instead of decode-

and-forward relays [19]. We used two nodes, each running the standard

WARPLab Reference Design. The first node transmitted a constant base-

band waveform, resulting in an RF waveform consisting of just the carrier

sinusoid itself. The second node received this transmission, captured the

I/Q samples, then re-transmitted the same samples. The first node received

this re-transmission and offloaded the captured waveform to MATLAB. As

expected, the waveform received at the first node was a constant baseband

signal, with no frequency offset imposed by the receive-transmit operations

at the second node.

Our second experiment sought to verify that an amplify and forward re-

lay could capture and re-transmit a wideband OFDM waveform of sufficient

quality to actually improve the reliability of a wireless link. This experiment

19



utilized three WARP nodes. Two, those acting as the source and desti-

nation nodes, used the standard MATLAB-controlled WARPLab reference

design. The third node, acting as the relay, used a custom WARPLab de-

sign which implemented automatic, sequential receive and transmit phases.

The receive phase was triggered by MATLAB and coincided with the first

half of the source node’s transmission. In this phase, the relay captured the

raw received I/Q samples. The relay’s transmit phase followed immediately

thereafter, coinciding with the second half of the source’s transmission. In

its transmit phase, the relay re-transmitted the raw samples previously cap-

tured. The destination node captured both transmissions (from the source

in slot one, and from the source and relay in slot two). The captured sam-

ples were offloaded to MATLAB for processing. This scheme mimicked the

two time slot schedule of a real-time amplify and forward cooperative system

while preserving the flexibility of MATLAB for all physical layer processing.

Using this setup, we were able to verify that, over a useful range of SNRs,

the relay’s re-transmission reproduced the original waveform with sufficient

quality to enable successful decoding at the destination. This was a key re-

sult, providing confidence that a comparable real-time implementation could

realize actual performance gains in a real network of cooperative nodes.

The cooperative communication experiments described above took ad-

vantage of the use of WARPLab as a framework that enables WARP as a

GPP-SDR platform. In these experiments, using MATLAB for all physical

layer processing and using WARP hardware for over-the-air transmission and

reception facilitated the implementation of our first prototype of cooperative

communication systems. However, reading and writing samples between the

20



MATLAB workspace and the WARP FPGA buffers resulted in a minimum

receive-to-transmit delay of approximately 1 second. This delay was accept-

able for a first prototype but our final goal was the implementation of a

real-time system. Hence, we ported the physical layer processing from MAT-

LAB code to FPGA code. Using WARPLab as a hybrid GPP-PH-SDR plat-

form facilitated porting the physical layer processing from MATLAB code

to FPGA code because both implementations use exactly the same WARP

hardware. We recently completed the design of a cooperative communication

system in which the physical layer runs in real-time in the WARP FPGA [20].

Furthermore, we have used this physical layer in the study of cooperative

medium access control [21, 22]. In these designs the time between reception

and transmission is approximately 20 µs. Given that our design operates in

a 10 MHz bandwidth, a receive-to-transmit delay of 20 µs is comparable to

the delay in Wi-Fi systems.

3.3. More WARPLab Examples

We have presented examples that illustrate the use of the WARPLab

framework. WARPLab is currently being used by several research labs. Au-

thors in [23] have proposed a Cooperative Partial Detection (CPD) strategy

for detection in multiple antenna relay channels and verified the performance

of CPD using WARPLab. A Cooperative Physical layer protocol has been

demonstrated in [24]. More research results using WARP and WARPLab

can be found at [25].

21



4. Conclusion

We have created a framework for rapid prototyping of algorithms for

wireless communications. The framework gives the user flexibility to imple-

ment baseband signal processing on a GPP or in real-time on an FPGA. The

framework is currently being used by several research groups.

References

[1] Zheng, L., Tse, D.. Diversity and multiplexing: A fundamental trade-

off in multiple-antenna channels. IEEE Transanctions on Information

Theory 2003;49:1073–1096.

[2] Kramer, G., Maric, I., Yates, R.. Cooperative communications. Foun-

dations and Trends in Networking 2006;1(3).

[3] Haykin, S.. Cognitive radio: brain-empowered wireless communications.

IEEE JSAC 2005;23(2):201–220.

[4] Schmid, T., Sekkat, O., Srivastava., M.B.. An experimental study

of network performance impact of increased latency in software defined

radios. In: WinTECH ’07: Proceedings of the second ACM international

workshop on Wireless network testbeds, experimental evaluation and

characterization. 2007, p. 59–66.

[5] Miljanic, Z., Seskar, I., Le, K., Raychaudhuri, D.. The WINLAB net-

work centric cognitive radio hardware platform - WiNC2R. In: 2nd In-

ternational Conference on Cognitive Radio Oriented Wireless Networks

and Communications, CrownCom. 2007, p. 155–160.

22



[6] GNU Radio. 2010. URL http://gnuradio.org.

[7] Tan, K., Zhang, J., Fang, J., Liu, H., Ye, Y., Wang, S., et al. SORA:

high performance software radio using general purpose multi-core pro-

cessors. In: NSDI’09: Proceedings of the 6th USENIX symposium on

Networked systems design and implementation. Apr.; 2009, p. 75–90.

[8] WARP repository. 2010. URL http://warp.rice.edu/trac.

[9] Alamouti, S.M.. A simple transmit diversity scheme for wireless com-

munications. IEEE JSAC 1998;16(8):1451–1458.

[10] Mango Communications. 2010. URL http://www.mangocomm.com/

products/boards/warp-fpga-board-v2.

[11] Maxim MAX2829. 2011. URL http://www.maxim-ic.com/max2829.

[12] WARPLab framework. 2010. URL http://warp.rice.edu/WARPLab.

[13] 2010. URL http://www.mathworks.com/matlabcentral/fileexchange/

345.

[14] Azimuth ACE 400WB. 2010. URL http://www.azimuthsystems.com/

platforms-channel-400wb.htm.

[15] Celine, G.. Effectively testing MIMO-enabled wireless devices. In: RF

DESIGN; vol. 30. 2007, p. 40–44.

[16] Duarte, M., Sabharwal, A., Dick, C., Rao, R.. Beamforming in MISO

systems: Empirical results and EVM-based analysis. IEEE Transactions

on Wireless Communications 2010;9(10):3214–3225.

23



[17] Love, D.J., Heath, R.W., Strohmer, T.. Grassmannian beamforming

for multiple-input multiple-output wireless systems. IEEE Transanc-

tions on Information Theory 2003;49:2735–2747.

[18] Ma, Y., Zhang, D., Leith, A., Wang, Z.. Error performance of transmit

beamforming with delayed and limited feedback. IEEE Transactions on

Wireless Communications 2009;8(3):1164–1170.

[19] Murphy, P., Sabharwal, A., Aazhang, B.. On building a coopera-

tive communication system: Testbed implementation and first results.

EURASIP Journal on Wireless Communications and Networking 2009;.

[20] Murphy, P., Sabharwal, A.. Design, implementation and characteri-

zation of a cooperative communications system. IEEE Transactions on

Vehicular Technology 2011;.

[21] Hunter, C., Murphy, P., Sabharwal, A.. Real-time testbed implemen-

tation of a distributed cooperative MAC and PHY. In: Proceedings of

CISS. 2010,.

[22] Hunter, C., Sabharwal, A.. Distributed protocols for interference man-

agement in cooperative networks. IEEE Journal on Selected Areas in

Communications, to appear, 2012;.

[23] Amiri, K., Wu, M., Duarte, M., Cavallaro, J.. Physical layer algorithm

and hardware verification of MIMO relays using cooperative partial de-

tection. In: IEEE International Conference on Acoustics, Speech and

Signal Processing, ICASSP. 2010,.

24



[24] Singh, S.R., Siddiqui, E.A., Korakis, T., Liu, P., Panwar, S.S.. A

demonstration of video over a cooperative PHY layer protocol. In: ACM

MobiCom. 2008,.

[25] WARP papers and presentations. 2010. URL http://warp.rice.edu/

papers.

25


