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Abstract

Random Access Cooperative Systems

by

Christopher R. Hunter

User-cooperation has been studied extensively in the literature. This

mechanism achieves many of the same gains that can be had by using

multi-antenna (MIMO) communications in applications where the size of

a node is limited. Existing analysis assumes that the system is scheduled;

both the relay knows to listen when a packet is being sent. We present

analysis of a class of random-access cooperative systems and show that

the same performance as the scheduled systems can be achieved as long as

certain requirements are met in the packet detection scheme of the relay.

In particular, we find that a static decision threshold on energy detection

results in a cooperative network that performs asymptotically no better

than a simple point-to-point network with no relay at all. However, a

decision threshold that dynamically shifts with average SNR allows the

system to achieve full spatial diversity.
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Chapter 1

Introduction

Multi-antenna communications (MIMO) is a class of techniques that have shown dra-

matic performance gains in terms of both the reliability and throughput of wireless

communication links [1]. In order to produce statistically independent communica-

tion channels, however, these techniques require antenna arrays with enough physical

separation between elements. While this spatial limitation is of minor concern for

devices like notebook computers or cellular base stations, it can be infeasible in ap-

plications such as mobile phones or sensor networks where the devices must be small

or be of limited architectural complexity.

User cooperation employs multiple single-antenna nodes that work together in

such a way that the system appears to be a single multi-antenna transmitter from

the perspective of the destination node. Intuitively, this MIMO-like interpretation

motivates why cooperative networks can exhibit many of the same performance gains

as multi-antenna systems.

1.1 Historical Context

The first foray into user cooperation was the study of the relay channel. This channel

was first studied by van der Meulen [2, 3], and later by Cover and El Gamal [4]. In
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the context of discrete memoryless and Gaussian degraded channels, this information

theoretic analysis concluded that cooperation can improve the capacity of a wireless

network. An achievable rate region was presented by Sendonaris et al. for the relay

channel [5–7]. This analysis focused on an ergodic fading scenario with applications

to CDMA technologies.

More recently, basic and foundational protocols for cooperation have been pre-

sented and analyzed in the context of delay-constrained quasi-static fading channels

by Laneman et al. [8]. In addition to relying on half-duplex radios, this work sep-

arated itself from prior work by considering outage probability as a performance

metric. This work was later extended to apply to larger networks of N coopera-

tive relays [9]. The simple protocols in Laneman’s original works have served as the

basis for many powerful extensions to target new applications such as high-spectral

efficiency scenarios [10–13]. Additionally, work has been performed in the develop-

ment of practical coding schemes to achieve the performance benefits shown by the

information theoretic analysis in the literature [14–17]. As we discuss in Section 1.2,

a critical assumption in these works is that a cooperative relay must know when a

source transmits with perfect accuracy. In other words, these protocols and their

analyses apply to the area of scheduled access systems.

Other work in the field has been performed on random access systems. Specifically,

a proposed cooperative random access protocol extended from the Network-assisted

Diversity Multiple Access (NDMA) protocol uses cooperative retransmissions to allow

a base station to decode the collided packets that occur in random access networks

[18, 19]. The use of cooperation in this protocol is not intentended, however, to

improve the physical-layer reliability of a transmission. Instead, cooperation serves to

improve network-layer throughput by eliminating collisions. Our problem, described

in Section 1.2, is different in that we analyze the negative effects of random access

on the physical-layer reliability of a transmission. In that sense, while they have
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attempted to answer the problem of how physical-layer cooperation can aid random-

access networks, the work in this thesis attempts to answer the question of how badly

random-access networks can corrupt the physical-layer performance gains shown in

the prior literature.

Additionally, there has been work on solving issues of symbol-level asynchronism

in cooperative networks [20]. However, these works do not analyze the effects of

uncertainty surrounding a source’s transmission or lack thereof in a random access

system. This packet-level uncertainty is the focus of this work. In particular, we

analyze a class of amplify-and-forward protocols originally proposed by Laneman

under the conditions of a random access system.

In Laneman’s work [8], cooperative transmission is coded over two time slots.

In the first slot, the source broadcasts a message to both an altruistic relay and

the destination. In the second slot, the relay transmits what it heard while the

source is silent. Alternatively, the protocol can be extended to allow the source

to continue transmitting during the second slot. We adopt the terminology in [11]

and describe the former case as “Orthogonal Amplify-and-Forward” (OAF) and the

latter case as “Non-Orthogonal Amplify-and-Forward” (NAF). For our problem, the

distinction between these cases is important. As such, each case is analyzed separately

in Chapters 4 and 5 respectively.

S

R

Dhs,d

hs,r

(a) Slot 1

S

R

D

hr,d

(b) Slot 2

Figure 1.1: Orthogonal Amplify-and-Forward cooperation.
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R

Dhs,d

hs,r

(a) Slot 1

S

R

Dhs,d

hr,d

(b) Slot 2

Figure 1.2: Non-Orthogonal Amplify-and-Forward cooperation.

As shown in Figures 1.1 and 1.2, the principle gain in such protocols is that the

message has more than one path to the destination in the event of poor channel

conditions. Through Gaussian random coding arguments, Laneman shows that such

systems achieve full spatial diversity (i.e. the probability of outage decays asymp-

totically as SNR−2 with two transmitting nodes). Implicit in this analysis is that

the source, relay, and destination all know a priori that the source has something to

send. This is equivalent to a scheduled access system where medium access occurs

deterministically via a centralized scheduler. This thesis relaxes this assumption to

consider an additional randomness of the source itself.

1.2 Problem Description

We focus on describing the performance of random access cooperative systems where

the source’s transmission time, as well as content, is unknown. By studying the prob-

lem under these relaxed assumptions, we can answer the fundamental question of

whether or not full cooperative diversity can be achieved in random access systems.

The source randomness requires an additional level of detection at nodes to determine

whether or not a message is present that needs to be processed. Throughout the anal-

ysis in this thesis, we still assume perfect scheduling between source and destination.
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In other words, only the relay is susceptible to errors in this extra level of packet

detection. This assumption is fitting not only as a lower bound on the performance

of the more general case where all nodes are unsynchronized, but also applies to a

potential deployment scenario of interest. Existing cellular data networks are central-

ized with scheduling between mobile units and base stations. As demand for mobile

data expands, system capacity must be increased to support it. One idea to increase

this capacity is to deploy altruistic relays to cooperate with mobile devices. Ideally,

these relays would be inexpensive, “dumb” nodes that could be scattered throughout

the cellular network. There are potentially significant cost savings to network oper-

ators if these relays are decentralized devices that act on their own. In other words,

source and destinations remain synchronous while, from the perspective of the relay,

the system appears as a random access cooperative link. This thesis analyzes the

theoretical performance of this scenario.

1.3 Organization of Thesis

This thesis has two major parts. Chapters 2 and 3 describe the various error events

that can occur and the likelihood of their occurrence with an unsynchronized relay.

This analysis is generic and can be used to analyze any relaying protocol that uses

fixed slot durations (e.g. decode-and-forward). We then apply this general analysis

and study one class of protocols, amplify-and-forward, in depth. Amplify-and-forward

protocols are perhaps the simplest to implement, requiring only memory and a mul-

tiplier at the relay. Chapters 4 and 5 analyze the system performance conditioned

on the aforementioned error events. This analysis coupled with the error event like-

lihoods culminates in analysis of overall system performance.
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Cooperative Random Access Systems
effects of source randomness on existing amplify-and-forward cooperative protocols

Introduction

Energy Detection

Static
Relay Detection

Dynamic
Relay Detection

Orthogonal Amplify-and-Forward

Static
Relay Detection

Dynamic
Relay Detection

Non-Orthogonal Amplify-and-Forward

Static Threshold
Relay Detection

Dynamic
Relay Detection

Conclusions

Chapter 1

Chapter 3

Chapter 4 Chapter 5

Chapter 6

System Model

Orthogonal
AF

Non-Orthogonal 
AF

Chapter 2 Likelihood of
Error Events

Effects of
Error Events
and overall

System Performance

Figure 1.3: Outline of thesis

As shown in Figure 1.3, we consider two forms of cooperative relaying: Orthogo-

nal Amplify-and-Forward (OAF) and Non-Orthogonal Amplify-and-Forward (NAF).

Additionally, we consider two types of packet detection schemes: static thresholds

for energy detection at the relay and dynamic thresholds for energy detection at the

relay. We analyze all combinations of these cooperative relaying and packet detection

schemes.



7

1.4 Summary of Results

We analyze the outage performance of the two random access cooperative protocols

under the two classes of energy detection strategies.

Orthogonal Non-Orthogonal

Static Relay Section 4.2.1 Section 5.2.1

Dynamic Relay Section 4.2.2 Section 5.2.2

The four results associated with each of these combinations can be found in the

sections specified by the above table. We find that, for both the OAF and NAF

protocols, a static decision threshold on energy detection results in a cooperative

network that performs asymptotically no better than a simple point-to-point network

with no relay at all. However, a decision threshold that dynamically shifts with

average SNR allows systems with either protocol to achieve full spatial diversity.



Chapter 2

Network Model

Under the source-destination synchronization assumption, the source transmits at

known times from the perspective of the destination. As such, the destination never

fails to observe a transmitted message nor does it mistake a noise event with the

presence of a message. The relay’s task, however, is not merely to amplify-and-

forward what it receives, but also to decide whether or not something was sent in

the first place. To describe the possible error events in this scenario, we introduce a

slotted random-access network model.

In this model, the source is assumed to contend for the medium on known slot

boundaries for a duration of L symbols in two slots. The relay’s behavior is the

following:

• If a packet is detected in the previous slot, amplify-and-forward the waveform

in the current slot

• If not, purge the received waveform and continue sensing the medium

As shown in Figure 2.1 we define four possible packet detection events at the

relay. Successfully detecting the presence of a packet (P7→P) corresponds to event

S1. Similarly, successfully ignoring a slot when no transmit occurs (0 7→0) corresponds
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S1

M
F

S2

P

0

P

0

S1

S2

M
F

Successful Detection of Packet

Successful Detection of No Packet

Missed Detection of Packet

False Alarm on No Packet

Figure 2.1: Packet detection events

to event S2. However, in the event that a transmitted codeword is missed (P7→0) we

say that event M occurs. Finally, falsely identifying noise as a transmission (07→P)

is deemed event F . We use the notation PM and PF , respectively, to describe the

probability of these error events. Likewise, we use the notation PS1 = P̄M and

PS2 = P̄F to describe the probability of the successful events. For the purposes of

this chapter, the particular detection scheme employed by the relay is inconsequential.

We investigate the effects of these errors for arbitrary (PM, PF) pairs. In Chapter

3, we analyze energy detection as a particular packet detection scheme that can be

employed by the relay to assign PM and PF as a functions of average SNR as well as

a particular fading channel gains.

The rest of this section describes the different possible states of the cooperative

network and and the likelihood of each occurring. Orthogonal Amplify-and-Forward

and Nonorthogonal Amplify-and-Forward models yields very different possible net-

work states. As such, each is analyzed separately.
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2.1 Orthogonal Amplify-and-Forward

As stated earlier, the Orthogonal Amplify-and-Forward (OAF) protocol employs strict

temporal orthogonality between the source and relay. We assume that the source

contends for the medium in frames, which we define to be a two-slot unit. The

first slot, it transmits with some average power (denoted by P ), and it is silent

in the second slot (denoted by 0). If the source has nothing to send, we assume

that it remains silent over two slots.1 We assume a quasi-static fading model whose

instantaneous channel conditions are constant for the duration of a single frame (i.e.

two slots). This assumption aligns source channel usage with independent channel

draws (i.e. the channel does not change between the first and second slot of a frame).

The purpose of this assumption is to ensure that any diversity improvements in the

system are spatial and not temporal.

S1

P 0

S1

P 0

S2 S2

0 0

S2M
P 0

S2 F
0 0

S2

P 0

1 2 1 2 1 2 1 2 1 2 1 2

P+N P+N N

[ [ [ [ [ [
1 2 3 4 5 6

Slots

Frames

Relay
Transmission

Source
Transmission

Figure 2.2: Example sequence of events and relay behavior for OAF

In Figure 2.2, we show potential sequences of events in this system. The figure

shows the transmits and lack thereof of the source and relay. Per the behavioral

description earlier, events S1 and F trigger action at the relay. For either of these

events, the relay transmits an amplified stored waveform in the following slot. De-

pending on what waveform was actually transmitted, we, the omniscient observers,

externally apply labels to the relay’s waveform. In the event that S1 occurs at the

beginning of a transmission slot, the transmitted waveform from the relay is denoted

1This assumption yields a special case of a transmitter that, in general, can be silent for any
integer number of slots. We do not, however, exploit this analytical convenience at the relay. As
such, we assume the relay is only slot-synchronized and has no notion of frames.
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as P + N , representing the fact that the slot contains both source data and noise.1

In the event that F occurs, the waveform transmitted by the relay is amplified noise

and is represented by N . The sequence in Figure 2.2 shows four “busy” frames (one,

two, four, and six) and two “idle” frames (three and five). Of the busy frames, we

can see that relay behaves perfectly in frames one and two by successfully detecting

the presence of a source transmission in the first slot and forwarding the received

waveform in the second slot. However, in the fourth frame, the relay never transmits

because it missed the detection of the source’s transmission in the first slot. In the

sixth frame, the relay actively hurts the source’s ability to communicate by trans-

mitting noise during the first slot of the frame because it falsely believed the source

transmitted in the second slot of the previous frame.

For any given channel draw (i.e. a given frame), any one of ten channel states is

possible.

S2S2

S2

MS1 P+N

P P

N

0 0

F
0 0

S2 S2

0 0

FN

F
0

F
0 0

S2

0 0

N N

Source Busy States

Source Idle States

P 0

FM
P 0 P 0

0

N

B1 B2 B3 B4 B5

I1 I2 I3 I4 I5

Relay
Transmission

Source
Transmission

Relay
Transmission

Source
Transmission

Figure 2.3: Channel states for OAF protocol

Figure 2.3 shows the ten channel states that can occur. States B1 to B5 represent

the source “busy” states, where the source is actively transmitting. Similarly, states

I1 to I5 represent the source “idle” states. We further categorize the busy states

to describe their importance from the perspective of the destination node trying to

decode the packet.

1Note, the label P + N is not intended to imply that the power of the relay’s transmission is
simply the power of the source’s transmission added to the power of receiver noise. The label is
simply to indicate the pieces of information present in that particular slot. The relay’s transmission
power is significantly more subtle and is described in Chapters 4 and 5
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• Best Case: B1 represents the case where the relay behaves perfectly. The relay

actively helps the source communicate by forwarding its received waveform in

the second slot of the frame.

• Neutral Cases: B2 and B3 represent cases where the relay neither helps nor

hurts the source. In both slots of the frame, the relay senses the medium, and

thus, never transmits due to a half-duplex constraint.

• Worst Cases: B4 and B5 represent cases where the relay actively hurts the

source’s ability to communicate by transmitting noise during the first slot of

the frame.

Each of these states have some likelihood of occurring. Given the present state,

the future states are independent of the past states. Thus, the stationary probability

of the states can be computed by considering the probabilities of the transitions

between these states and treating the system as a Markov chain. We collect these

state transition probabilities into a table representing the Markov chain probability

transition matrix.

B1 B2 B3 B4 B5 I1 I2 I3 I4 I5

B1 q ¯PM qPMP̄F qPMPF 0 0 q̄P̄F P̄F q̄P̄FPF q̄PF 0 0

B2 q ¯PM qPMP̄F qPMPF 0 0 q̄P̄F P̄F q̄P̄FPF q̄PF 0 0

B3 0 0 0 qP̄F qPF 0 0 0 q̄P̄F q̄PF

B4 q ¯PM qPMP̄F qPMPF 0 0 q̄P̄F P̄F q̄P̄FPF q̄PF 0 0

B5 0 0 0 qP̄F qPF 0 0 0 q̄P̄F q̄PF

I1 q ¯PM qPMP̄F qPMPF 0 0 q̄P̄F P̄F q̄P̄FPF q̄PF 0 0

I2 0 0 0 qP̄F qPF 0 0 0 q̄P̄F q̄PF

I3 q ¯PM qPMP̄F qPMPF 0 0 q̄P̄F P̄F q̄P̄FPF q̄PF 0 0

I4 q ¯PM qPMP̄F qPMPF 0 0 q̄P̄F P̄F q̄P̄FPF q̄PF 0 0

I5 0 0 0 qP̄F qPF 0 0 0 q̄P̄F q̄PF

Table 2.1: Labeled Markov chain probability transition matrix for OAF
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Table 2.1 shows the likelihood of transitioning from any state to any other state.

The only new parameter in this table is q, which we use to represent the source

transmission probability. The rows represents the starting states and the columns

represent the ending states. For brevity, we will not exhaustively describe each of

these transitions, but instead describe a few representative examples. Determining

the probabilities of the other transitions follows similar reasoning.

State B1 can transition to itself if the source transmits again (q) and that transmis-

sion is not missed (P̄M). Because these probabilities are independent, the probability

of this transition occurring is their product.

As another example, B1 can transition to I2 if the source is idle in the next frame

(q̄), the first slot of noise does not result in a false alarm (P̄F), and the second slot

does result in a false alarm (PF). When conditioned on a particular channel gain,

these probabilities arise from random noise. Hence, the probability of this transition

occurring is their product.

Finally, consider the transition from state B3 to B1. This transition is impossible

due to the F event in the second slot of B3, which dictates that the relay will transmit

noise in the first slot of the next state. Thus, the probability of the transition is zero.

As long as q ∈ (0, 1), PM ∈ (0, 1), and PF ∈ (0, 1), we can say that each state

in the Markov chain is accessible in that there is a non-zero probability of entering

any state at some point in the future while originating from any other state. Thus,

the Markov chain is irreducible under these conditions, which allows us to perform

steady-state analysis of the stationary probabilities.
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We can visualize the system as states with certain possible transitions between

them as in Figure 2.4.

B1

B2

B3

B4

B5

I1

I2

I3

I4

I5

Figure 2.4: Visualization of Markov chain for OAF protocol

Finally, we can solve for the stationary probabilities of each of these states by

solving the following system of equations:



0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1


=
[

B1 B2 B3 B4 B5 I1 I2 I3 I4 I5 1
]Transition 

Probability 
Matrix

[
B1 B2 B3 B4 B5 I1 I2 I3 I4 I5

]

This problem amounts to solving a system of 11 equations for 10 unknowns, giving

us a unique stationary distribution of the states in the network. While this sort of

problem is straightforward to solve, the size of the matrix leads us to use a symbolic

solver (such as Mathematica).
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2.1.1 Results

The following expressions relate the stationary probability of each of the states to the

probability of transmission, the probability of missed detections, and the probability

of false alarms:

PB1 =
(PF − 1)(PM − 1)q

qP 2
F − P 2

F + PMqPF − qPF + 1

PB2 =
(PF − 1)2PMq

qP 2
F − P 2

F + PMqPF − qPF + 1

PB3 = − (PF − 1)PFPMq

qP 2
F − P 2

F + PMqPF − qPF + 1

PB4 = −(PF − 1)PFq(qPF − PF + PMq − q + 1)

qP 2
F − P 2

F + PMqPF − qPF + 1

PB5 =
P 2
Fq(qPF − PF + PMq − q + 1)

qP 2
F − P 2

F + PMqPF − qPF + 1

PI1 =
(PF − 1)3(q − 1)

qP 2
F − P 2

F + PMqPF − qPF + 1

PI2 =
(PF − 1)2PF(q − 1)

qP 2
F − P 2

F + PMqPF − qPF + 1

PI3 =
(PF − 1)PF(q − 1)

qP 2
F − P 2

F + PMqPF − qPF + 1

PI4 =
(PF − 1)PF(q − 1)(qPF − PF + PMq − q + 1)

qP 2
F − P 2

F + PMqPF − qPF + 1

PI5 = −P
2
F(q − 1)(qPF − PF + PMq − q + 1)

qP 2
F − P 2

F + PMqPF − qPF + 1
,

for q ∈ (0, 1), PM ∈ (0, 1), and PF ∈ (0, 1).

In the next sections, we will discuss each of these probabilities in context of the

greater problem.
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2.1.1.1 State B1
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Figure 2.5: Probability of state B1

The state B1 represents the best case for the system where the relay successfully

cooperates with the source. Figure 2.5 contains a contour plot that shows the prob-

ability of this state occurring as a function of the probability of missed detections at

the relay (PM) and the probability of false alarms at the relay (PF). For this plot, as

well as those in all later sections, the probability of transmission q is assumed to be

1
2

without loss of generality. Intuitively, the best case state should occur most often

when PM and PF are small. This is verified by the contour plot above that shows

that the likelihood of the state approaches 1
2

in the white region.

A modified state diagram is also shown in Figure 2.5, where each transition’s

opacity is scaled by the likelihood of it occurring given a PM and PF drawn from

the most likely (white) region of the contour plot. Starting from any state and only

following the most likely (darkest) paths, the system ends up in either B1 or I1.

Hence, B1 occurs whenever the source is busy, which occurs with probability q = 1
2
.
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2.1.1.2 State B2
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Figure 2.6: Probability of state B2

The state B2 represents a neutral case where the relay neither helps nor hurts

the communication link. The relay misses the packet in the first slot of the frame.

One would expect this event to be increasingly likely as PM grows large, and the

contour plot in Figure 2.6 confirms this. This state is also defined by a successful

detection of nothing in the second slot. This event is equivalent to the statement

that the second slot cannot be have a false alarm detection at the relay. Hence, the

likelihood of this state increases as PF decreases. With increasing PM and decreasing

PF , the probability of this state occurring approaches 1
2

in the white region. That

would mean that this state occurs whenever the source transmits.

In the opacity-modified state diagram in Figure 2.6, the steady state behavior of

the system is to be in either state B2 or I1 when PM and PF are drawn from the

white region of the contour plot.
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2.1.1.3 State B3
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Figure 2.7: Probability of state B3

The state B3 represents another neutral case where the relay neither helps nor

hurts the communication link. The likelihood of this state grows with PM because

the first slot is defined by a missed detection event at the relay. The likelihood of this

state increases with PF because the second slot is defined by a false alarmat the relay.

However, notice that every state in the OAF protocol is characterized by the absence

of a source transmission in the second slot. If PF is too large, states that begin with

the transmission of noise, and not with PM as is needed in this state, become more

likely. Hence, the maximum probability of this state occurring corresponds to a PF

that is neither too small nor too large.

Even when PM and PF are drawn from the white region of the contour plot, the

state’s likelihood is less than 0.16. As seen in state diagram of Figure 2.7, many of

the state transitions are quite likely when the likelihood of the state is maximized,

accounting for the state’s relative rarity.
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2.1.1.4 State B4
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Figure 2.8: Probability of state B4

The state B4 represents a worst case where the relay actively deteriorates the

source’s transmission by transmitting noise during the same slot. This state requires

that the second slot of the previous frame contain a false alarm at the relay. Assuming

the previous frame is a busy frame, this can only happen when the relay misses the

packet from the source. Hence, the probability of this state occurring is an increasing

function of PM. This state also needs large PF in order to account for the noise event

at the relay in the first slot. However, this state needs small PF in order to ensure

an S2 event in the second slot. The likelihood of this state is maximized when PF is

neither too large nor too small.

Because of the tradeoff regarding PF , the overall probability of this state occurring

is small. This rarity is captured by the modified state diagram in Figure 2.8 by show-

ing that many of the state transitions are quite likely, thus reducing the stationary

likelihood of any one particular state.
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2.1.1.5 State B5
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Figure 2.9: Probability of state B5

The state B5 represents another worst case where the relay actively deteriorates

the source’s transmission by transmitting noise during the same slot. False alarms not

only account for the relay noise transmission event in the first slot, but also account

for the false alarm event in the second slot. Thus, the likelihood of this state occurring

is a strictly increasing function of PF . Like in the previously described state, missed

detections make this event more likely because they increase the likelihood of a false

positive in the second slot, which in turn guarantees a noise transmission during the

first slot of the current frame. Thus, the likelihood is also a strictly increasing function

of PM.

As shown in the state diagram of Figure 2.9, the steady state behavior of this

system with PM and PF drawn from the white region of the contour plot is that the

network spends all of its time in B5 when the source is transmitting and I5 when it

is idle. This intuitively explains why the likelihood of the state approaches q = 1
2
.
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2.1.1.6 State I1
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Figure 2.10: Probability of state I1

The state I1 represents the case where the relay successfully detects nothing in

both slots. As such, a small PF increases the likelihood of this state. PM only relates

to this likelihood in the sense that missed detections allow for false positives in the

second slot of the previous frame. Because this event would make state I1 impossible,

the likelihood of this state is increased slightly with small PM.

When PM and PF are drawn from the white region of the contour plot, Figure

2.10 shows how the steady state behavior of the system is state I1 when the source is

idle.
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2.1.1.7 State I2
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Figure 2.11: Probability of state I2

Like state I1, state I2 still sees no transmissions from the relay in either slot. Also

like the previous state, missed detections can only make this state less likely to occur

since they increase the likelihood of false positives in the second slot of the previous

frame. Hence, the probability of this state occurring increases with decreasing PM.

Unlike the previous state, however, a false alarm occurs during the second slot. A

large PF makes the first slot less likely and the second slot more likely. A small PF

makes the first slot more likely and the second slot less likely. Hence, this state occurs

the most when PF is neither too large nor too small. Because of this tradeoff, the

overall probability of this state is lower than many of the others in the system. This

low probability is captured by Figure 2.11 in that many different state transitions are

likely in the system. Thus, the likelihood of one particular state is small.
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2.1.1.8 State I3
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Figure 2.12: Probability of state I3

I3 has a sensing period during its first slot. The likelihood of having this sensing

period occur increases if the likelihood of having a false alarm in the second slot of the

previous frame is small. This probability, in turn, is decreased if missed detections

are unlikely events because the relay is busy during the second slot of previous busy

frames. Hence, this state occurs most often for small values of PM. PF both helps

and hurts the probability of this state occurring. It helps in that the first slot of

this state is, in fact, an F event. However, the likelihood of event having a sensing

event in the first slot is reduced if the second slot of the previous frame had a large

F . Additionally, with a small PM, it is very unlikely for any busy state to have an

opportunity to have a false alarm in its second slot because the relay would be busy

forwarding its received waveform. Busy states are more likely to enter I3 even if PF

is large. In other words, for small PM, state I3 is more likely to occur with a large

PF than it is for a larger PM. This effect is shown in the state diagram above.
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2.1.1.9 State I4
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Figure 2.13: Probability of state I4

In terms of the relay’s behavior, state I4 is very similar to state B4. In the first

slot, the relay transmits noise because of false alarm event in the second slot of the

previous frame. In the second slot, the relay successfully detects that nothing was

transmitted. Missed detections increase the likelihood of entering this state since

they allow for the possibility of a false alarm event in the second slot of a busy state.

As such, the likelihood of this state occurring increases with PM. Like in state B4,

some false alarms are required to enter this state, but some successful detections of

no signal are required as well. Thus, we again see the tradeoff with regard to PF .

The probability of this state occurring is maximized when PF is neither too small nor

too large. The state diagram above shows that even when the likelihood of this state

is at its maximum, many other states can be reached. This confirms the fact that

the overall likelihood of this state is relatively small compared to those previously

mentioned.
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2.1.1.10 State I5
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Figure 2.14: Probability of state I5

State I5, like state B5, occurs more often when PF is large. The first slot, which

sees noise transmitted from the relay, implies that a false alarm has occurred in the

second slot of the previous frame. Likewise, a false alarm is explicitly necessary in

the second slot of this frame. The state likelihood is relatively independent of the

likelihood of missed detections, provided it is not too small. A large PM increases

the likelihood of this state occurring because it allows for busy states to transition

into this state. The state diagram in Figure 2.14 shows that, with high probability,

the eventual state of the system is I5 whenever the source is idle, which accounts for

the probability q̄ = 1
2

of the system being in this state.
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2.2 Non-Orthogonal Amplify-and-Forward

We now describe the Non-Orthogonal Amplify-and-Forward (NAF) protocol. The

assumptions underlying the model are exactly the same as the OAF protocol presented

earlier: the source still contends on two-slot boundaries and the channel is assumed to

be static over this duration. However, unlike the OAF protocol, the source continues

to transmit at the same power level during its second slot. We assume the relay has

the exact same behavior as before. In fact, the relay does not even need to know

whether the system it is helping is an OAF or an NAF system. The rest of this

section is dedicated to describing the various possible states that can occur in this

cooperative network.
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Figure 2.15: Example sequence of packet detection events and relay behavior for NAF

In Figure 2.15, we show an example sequence that can potentially occur under

this protocol. A key difference between the NAF protocol and OAF protocol can

be seen in the fourth frame of the above figure. In this frame, the relay misses the

packet detection during the first slot, but successfully detects the presence of a source

transmission in the second slot, mistaking it for the beginning of the codeword. This

causes interference (denoted by I) to appear in the first slot of the next frame. In the

OAF protocol, this event can never happen simply because the source never transmits

during the second slot of a frame. This opens up a new class of errors that can occur

in the NAF protocol, thus increasing the total number of possible states.

As shown in Figure 2.16, there are a total of 14 different states for this protocol.
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Figure 2.16: Channel states for NAF protocol

States B1 to B7 represent the source busy states while states I1 to I7 represent source

idle states. Many of these states are very similar to those under the OAF protocol.

For example, state B1 under NAF is identical to B1 under OAF in the sense of the

relay’s behavior. The only difference is that the source continues to transmit during

the second slot. We can, again, classify the busy states based on their effect on the

system from the perspective of the destination.

• Best Case: B1 represents the case where the relay behaves perfectly. The relay

actively helps the source communicate by forwarding its received waveform in

the second slot of the frame.

• Neutral Cases: B2 and B3 represent cases where the relay neither helps nor

hurts the source. In both slots of the frame, the relay senses the medium, and

thus, never transmits.

• Worst Cases: B4 and B5 represent cases where the relay actively hurts the

source’s ability to communicate by transmitting noise during the first slot of

the frame. Additionally, B6 and B7 represent cases where the relay actively

hurts the link, but the origin of the failure is interference-driven as opposed to

noise-driven.
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In exactly the same way as the analysis of the OAF system before, we can build a

transition probability matrix for these 14 states in order to calculate their stationary

probabilities.

B1 B2 B3 B4 B5 B6 B7 I1 I2 I3 I4 I5 I6 I7

B1 q ¯PM qPM ¯PM qPMPM 0 0 0 0 q̄P̄F P̄F q̄P̄FPF q̄PF 0 0 0 0

B2 0 0 0 0 0 q ¯PM qPM 0 0 0 0 0 q̄P̄F q̄PF
B3 q ¯PM qPM ¯PM qPMPM 0 0 0 0 q̄P̄F P̄F q̄P̄FPF q̄PF 0 0 0 0

B4 0 0 0 0 0 q ¯PM qPM 0 0 0 0 0 q̄P̄F q̄PF
B5 q ¯PM qPM ¯PM qPMPM 0 0 0 0 q̄P̄F P̄F q̄P̄FPF q̄PF 0 0 0 0

B6 0 0 0 0 0 q ¯PM qPM 0 0 0 0 0 q̄P̄F q̄PF
B7 q ¯PM qPM ¯PM qPMPM 0 0 0 0 q̄P̄F P̄F q̄P̄FPF q̄PF 0 0 0 0

I1 q ¯PM qPM ¯PM qPMPM 0 0 0 0 q̄P̄F P̄F q̄P̄FPF q̄PF 0 0 0 0

I2 0 0 0 q ¯PM qPM 0 0 0 0 0 q̄P̄F q̄PF 0 0

I3 q ¯PM qPM ¯PM qPMPM 0 0 0 0 q̄P̄F P̄F q̄P̄FPF q̄PF 0 0 0 0

I4 q ¯PM qPM ¯PM qPMPM 0 0 0 0 q̄P̄F P̄F q̄P̄FPF q̄PF 0 0 0 0

I5 0 0 0 q ¯PM qPM 0 0 0 0 0 q̄P̄F q̄PF 0 0

I6 q ¯PM qPM ¯PM qPMPM 0 0 0 0 q̄P̄F P̄F q̄P̄FPF q̄PF 0 0 0 0

I7 0 0 0 q ¯PM qPM 0 0 0 0 0 q̄P̄F q̄PF 0 0

Table 2.2: Labeled Markov chain probability transition matrix for NAF

The transition probabilities presented in Table 2.2 are constructed in a similar

fashion to those in Table 2.1 . Like before, we will describe the construction process

of several of these transitions while noting that the others follow through the same

techniques.

In a case that is identical to the same case in the OAF protocol, state B1 can tran-

sition to itself if the source transmits again (q) and the transmission is not missed

(P̄M). These probabilities are independent, so the probability of this transition oc-

curring is their product.

For state B1 to transition to state B3, the source must transmit again (q), the

first slot’s transmission must be missed by the relay (PM), and then the second slot’s

transmission must also be missed a second time to account of the second transmission

from the source (PM). Given some particular channel realization, these likelihoods

are independent due to noise. Hence, the likelihood of this transition occurring is

their product.

Finally, for state B1 to transition to state I1, the source must be silent during
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the next frame (q̄), the relay must successfully detect no transmission (P̄F), and the

relay must successfully detect no transmission in the second slot as well (P̄F). Again,

given a particular channel realization, these likelihoods are independent and thus the

likelihood of this transition occurring is their product.

As long as q ∈ (0, 1), PM ∈ (0, 1), and PF ∈ (0, 1) we can perform steady-state

analysis of the stationary probabilities. We can visualize the system as states with

certain possible transitions between them as in Figure 2.17.

I1

I2

I3

I4

I5

I6

I7B7

B6

B1

B2

B3

B4

B5

Figure 2.17: Visualization of Markov chain for NAF protocol

Finally, we can solve for the stationary probabilities of each of these states by

solving the following system of equations:



0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1



[
B1 B2 B3 B4 B5 B6 B7 I1 I2 I3 I4 I5 I6 I7

]

=
[

B1 B2 B3 B4 B5 B6 B7 I1 I2 I3 I4 I5 I6 I7 1
]Transition 

Probability 
Matrix

Solving this system of 15 equations is straightforward, but involved. Like before,

we turn to symbolic solvers like Mathematica.
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2.2.1 Results

The following expressions are of the stationary probability of each of the states:

PB1 = −(PM − 1)q(qPF − PF + Pq − q + 1)

qP 2
F − P 2

F − P 2
Mq + 2PMq − q + 1

PB2 = −(PM − 1)PMq(qPF − PF + PMq − q + 1)

qP 2
F − P 2

F − P 2
Mq + 2PMq − q + 1

PB3 =
P 2
Mq(qPF − PF + PMq − q + 1)

qP 2
F − P 2

F − P 2
Mq + 2PMq − q + 1

PB4 = −PF(PM − 1)(q − 1)q (qP 2
M + PFqPM − 2qPM + PF − PFq + q − 1)

qP 2
F − P 2

F − P 2
Mq + 2PMq − q + 1

PB5 =
PFPM(q − 1)q (qP 2

M + PFqPM − 2qPM + PF − PFq + q − 1)

qP 2
F − P 2

F − P 2
Mq + 2PMq − q + 1

PB6 =
(PM − 1)2q2 (qP 2

F − P 2
F − PMPF + PMqPF − qPF + PF + PM)

qP 2
F − P 2

F − P 2
Mq + 2PMq − q + 1

PB7 = −(PM − 1)PMq
2 (qP 2

F − P 2
F − PMPF + PMqPF − qPF + PF + PM)

qP 2
F − P 2

F − P 2
Mq + 2PMq − q + 1

PI1 = −(PF − 1)2(q − 1)(qPF − PF + PMq − q + 1)

qP 2
F − P 2

F − P 2
Mq + 2PMq − q + 1

PI2 =
(PF − 1)PF(q − 1)(qPF − PF + PMq − q + 1)

qP 2
F − P 2

F − P 2
Mq + 2PMq − q + 1

PI3 = −PF(q − 1)(qPF − PF + PMq − q + 1)

qP 2
F − P 2

F − P 2
Mq + 2PMq − q + 1

PI4 =
(PF − 1)PF(q − 1)2 (qP 2

M + PFqPM − 2qPM + PF − PFq + q − 1)

qP 2
F − P 2

F − P 2
Mq + 2PMq − q + 1

PI5 = −P
2
F(q − 1)2 (qP 2

M + PFqPM − 2qPM + PF − PFq + q − 1)

qP 2
F − P 2

F − P 2
Mq + 2PMq − q + 1

PI6 = −(PF − 1)(PM − 1)(q − 1)q (qP 2
F − P 2

F − PMPF + PMqPF − qPF + PF + PM)

qP 2
F − P 2

F − P 2
Mq + 2PMq − q + 1

PI7 =
PF(PM − 1)(q − 1)q (qP 2

F − P 2
F − PMPF + PMqPF − qPF + PF + PM)

qP 2
F − P 2

F − P 2
Mq + 2PMq − q + 1

,

for q ∈ (0, 1), PM ∈ (0, 1), and PF ∈ (0, 1).

In the next sections, we will discuss each of these probabilities in the context of

the greater problem.
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2.2.1.1 State B1
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Figure 2.18: Probability of state B1

The state B1 represents the best case for the system where the relay successfully

cooperates with the source. Therefore, we would like it to occur as often as possible.

As shown in the contour plot of Figure 2.18, the highest probability happens when

both PM and PF are low. As these error probabilities decrease, the likelihood of

this state approaches q = 1
2
. This would mean that whenever the source decides to

transmit, the network has a very high probability of being in the B1 state.

The state diagram is also shown in Figure 2.18, where the opacity of each transition

corresponds to the likelihood of it occurring for PM and PF drawn from the white

region of the contour plot. From any given starting state, the system ends up in

either state B1 or I1 with high probability. This implies that whenever the source has

something to send, the relay helps it.
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2.2.1.2 State B2
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Figure 2.19: Probability of state B2

The state B2 represents a neutral case where the relay neither helps nor hurts

the communication link. In particular, this state represents the case where the relay

misses the transmission in the first slot, but successfully detects the transmission

in the second slot despite the fact this is not the intended behavior of the relay.

The likelihood of this state occurring is maximized when both missed detections and

successful detections are as likely as possible. Hence, as the contour plot in Figure

2.19 shows, this state is most likely to occur when PM is mid-valued. False alarm

events reduce the likelihood of this event because a false alarm in the second slot of

the previous frame would necessitate the relay transmitting in the first slot of this

frame. Hence, the likelihood of this state occurring is maximized as PF is decreases.

The state diagram shows that even when PM and PF are drawn from the white

region of the contour plot, the sheer quantity of likely transitions makes the state still

rather rare.
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2.2.1.3 State B3
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Figure 2.20: Probability of state B3

The state B3 represents another neutral case where the relay neither helps nor

hurts the communication link. In this case, the relay fails to detect the presence of

the source’s transmission in both slots. For this state to occur, missed detections must

be likely. Hence, we can see in Figure 2.20 that the likelihood of this state increases

monotonically with PM. False alarms in the second slot of the previous frame would

cause the relay to transmit in the first slot of the current frame, thereby making this

state impossible. However, if PF approaches one, the relay cannot have a false alarm

in the second slot of the previous frame because it would have been busy transmitting

noise that it had received from the false alarm in the first slot of the previous frame.

The likelihood of this state occurring increases as PF approaches one of its extrema.

The state diagram above shows that B3 and I3 form a communicating class of the

Markov chain when PM and PF are drawn from the white region of the contour plot.
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2.2.1.4 State B4
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Figure 2.21: Probability of state B4

This state is slightly different than the correspondingB4 state of the OAF protocol.

Under that protocol, the state could be entered from either a busy or idle state because

both classes of states are characterized by the lack of a source transmission in the

second slot. Under the NAF protocol, the only way to enter this state is via an idle

state because, by definition, a false detection can not occur in the second slot of a busy

state since the source is still transmitting. The likelihood of this state increases with

decreasing PM because the second slot is characterized by the successful detection of

the source’s transmission. The likelihood of this state increases with increasing PF

because there must be a false alarm in the second slot of the previous frame in order

for this state to occur.

The state diagram above shows that B4 is just one of many likely states when PM

and PF approach zero and one, respectively. Because of this, the overall likelihood of

this state is somewhat small.
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2.2.1.5 State B5
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Figure 2.22: Probability of state B5

The state B4 represents another worst case where the relay actively deteriorates

the source’s transmission by transmitting noise during the same slot. In the second

slot of this frame, the relay misses the source’s transmission. As shown in the contour

plot of Figure 2.22, the likelihood of this state increases with increasing PM. While a

false alarm is necessary in the second slot of the previous frame, a false alarm in the

first slot of the previous frame would make this state impossible because the relay

would be busy transmitting when it would need to be sensing. Hence, we observe a

tradeoff that tells us that the likelihood of this state occurring is maximized with PF

is neither too big nor too small.

The state diagram above shows this state is merely one of many valid destination

states, thus accounting for its relative rarity.



36

2.2.1.6 State B6
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Figure 2.23: Probability of state B6

State B6 is similar in spirit to state B4. They both fundamentally represent

cases where the relay actively hurts the transmission between source and destination.

However, the states differ in their origin. While B4 originates from the false alarm

on noise in the second slot of the previous frame, B6 originates from the successful,

but late, detection of a source’s transmission in the previous frame. Hence, we label

the relay’s transmission as interference as opposed to noise. Because of the successful

detection in the second slot of this frame, the probability of missed detections needs

to be small for this state to occur. Given a small PM, the previous busy frame must

have a successful detection in the second slot, which in turn requires that the relay

must be busy transmitting during the first slot. Hence, the likelihood of this state

increases with increasing false alarm probability.
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2.2.1.7 State B7
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Figure 2.24: Probability of state B7

State B7 is to B5 in the same way that B6 is to B4. The relay interferes with

the source’s transmission due to a detection event in the second slot of the previous

frame and misses the packet in the second slot. As shown in the contour plot of Figure

2.24, the likelihood of this state is maximized when both PM and PF are not at their

extrema. The state is defined by the presence of a missed detection in the second

slot, hence PM needs be bounded away from zero. However, a PM that is too large

makes the relay’s interference unlikely since it likely would have missed the packet in

the second slot of the last frame anyway. The state’s likelihood is much less sensitive

to PF . In the extreme case of a very small PF , this state is still possible, but the

class of busy states that begin with noise transmissions from the relay are unlikely as

origins since noise transmissions arise from false alarms. Also, in the extreme case of

a large PF , those states are also impossible as origins since any idle state would be

too busy during the second slot to even have a false alarm.
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2.2.1.8 State I1
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Figure 2.25: Probability of state I1

The state I1 represents the case where the relay recognizes that no signal is present

in both slots. As shown in the contour plot of Figure 2.25, the likelihood of this state is

increased with small PF . If missed detections are near-impossible, it guarantees that

there cannot be interference in the first slot of the current frame simply because any

previous busy state would have the relay forwarding its received waveform during

the second slot instead of sensing the medium. Likewise, if missed detections are

guaranteed, there cannot be interference in the first slot of the current frame because

the relay would be unable to detect the presence of the packet in the second slot

of the previous busy frame. Hence, as long as PM is near one of its extremes, the

likelihood of this state is high.

The state diagram shown above displays the likely transitions for when PM and

PF are near one and zero respectively. Starting at any state, the system ends up in

the communicating class of I1 or B3.
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2.2.1.9 State I2
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Figure 2.26: Probability of state I2

State I2 represents the idle case where the relay mistakes a noise event for a source

transmission during the second slot, but not the first. A large PF would make the false

alarm in the second slot likely, but it would make the successful detection in the first

slot unlikely. The inverse of this statement is also true. If PM is large, interference

during the first slot of the current frame is unlikely due to the same reasons argued

for state I1. However, unlike the previous state, a very small PM is not as beneficial

to this state because the fact that false alarms can occur in this setting does not

eliminate the possibility that a detection event can occur in the second slot of the

previous busy frame (i.e. the previous busy frame could start off with a relay noise

transmission).

The above state diagram shows that, while the likelihood of this state is increased

for these values of PM and PF , the event is still rather rare due to the sheer number

of valid state transitions that can occur.
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2.2.1.10 State I3
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Figure 2.27: Probability of state I3

State I3 is an interesting state where an error occurs in packet detection at the

relay, but the effects of that error do not propagate outside of this particular frame.

Because the destination is assumed to be synchronized to the source, it simply does

not care that this error has occurred. Intuitively, the likelihood of the state increases

monotonically with PF because a false alarm is present in the first slot of the frame.

Similarly, the likelihood of the state is maximized for large PM. If the previous frame

is busy, no successful detection can occur during the second slot because this event

would cause interference during the first slot of the current frame.

The state diagram above shows that the system ends up in state I3 whenever the

source is idle.
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2.2.1.11 State I4
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Figure 2.28: Probability of state I4

State I4 represents case where the relay where the relay starts off by transmitting

noise from a false alarm in the previous frame. However, a false positive cannot occur

in the second slot of the current frame. Because of this, the probability of this state

occurring is maximized whenever PF is neither too large nor too big. As shown in

the contour plot of Figure 2.28, the likelihood of this state is largely insensitive to

the probability of missed detections.

In the state diagram above, it can be seen that this state is actually quite rare.

Even when PF and PM are drawn from the white region of the contour plot, basically

every other state in the system is an equally valid destination after a transition.
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2.2.1.12 State I5
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Figure 2.29: Probability of state I5

State I5 represents the case where the relay transmits noise during the first slot

due to a previous false alarm and also has a false alarm that occurs during the second

slot. These two events are well-matched in the sense that both slots positively relate

to false alarms, so the overall likelihood of this event is relatively large. As shown in

the contour plot of Figure 2.29, the likelihood of this state increases with PF when

PM is small.

When PF and PM are drawn from the white region of the contour plot, the above

state diagram shows that the only entry point into state I5 is via states I2, I7, or itself.

When PM is large, the likelihood of entering state I7 is very small (as discussed in

Section 2.2.1.14). In other words, a primary entry point into this state is disabled

when PM is large, thus accounting for the decreased likelihood of state I5 when that

is the case.
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2.2.1.13 State I6

0.07

0.05

0.04

0.02

S2

0 0

I
I1

I2

I3

I4

I5

I6

I7B7

B6

B1

B2

B3

B4

B5

R

S

PM

PF

Probability of State

Figure 2.30: Probability of state I6

If the relay is put into a position where it successfully detected the packet in the

previous frame, but did so during the second slot instead of the first, this causes

interference during the first slot of this frame. Because the second slot of this state is

defined by a successful detection of silence, the likelihood of this state is maximized

when PF is small. When PM is too large, this state is unlikely because the successful,

but late, detection of the previous frame’s packet is impossible. When PM is too

small, this state is unlikely because the previous frame’s packet would only be detected

during the first slot and not the second. Hence, we see the likelihood of this state is

maximized when PM is neither too large nor too small. This relationship to PF and

PM is shown in the contour plot of Figure 2.30. Because of this tradeoff, the overall

likelihood of this state is rather small compared to others. This is evidenced by the

state diagram above, showing that many of the transitions are quite likely when PF

and PM are chosen such that the likelihood of this state is maximized.
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2.2.1.14 State I7
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Figure 2.31: Probability of state I7

The state I7 begins with interference from the relay due to a successful, but late,

detection of the previous frame’s packet. The second slot contains a false detection

at the relay as opposed to a successful detection of silence. This implies that the

likelihood of this state increases with PF , and this effect is shown in the contour plot

of Figure 2.31. When PF is large, this state does not need missed detections to cause

the late detections of the packet of the previous frame. After all, the detection can be

late simply because of a noise transmission event during the first slot of the previous

frame (e.g. state B4). Because of this, the likelihood of this state is increased by

making missed detection events very unlikely at the relay. The contour plot of Figure

2.31 shows the the likelihood of this state is maximized when PF and PM are large

and small, respectively.
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2.3 Summary

In the previous sections, we have defined all the possible network states for both

the OAF and NAF protocols in this random-access environment. Additionally, the

steady-state likelihoods of these states have been derived to relate the probability of

a state occurring to three parameters: q (the source transmission probability), PM

(the missed packet detection probability of the relay), and PF (the false alarm packet

detection probability of the relay). These latter two error probabilities have simply

been parameters in this system; the analysis thus far has been agnostic to how these

parameters relate to average SNR or instantaneous channel realizations. Since we

would like to be able to discuss the likelihood of these states occurring as functions of

these parameters, we move on to studying energy detection as the particular detection

mechanism.



Chapter 3

Energy Detection

In this chapter, we investigate a particular packet detection scheme that can be

employed at the relay terminal.

One of the main advantages of amplify-and-forward cooperation over decode-and-

forward cooperation (also presented in [8]) is the potential for reduced complexity of

a relay’s architecture. For amplify-and-forward, the relay is not required to decode,

and hence is not required to even know what coding strategy is employed. In our

analysis of random access amplify-and-forward networks, we would like to maintain as

much simplicity at the relay as possible in order to stay aligned with the motivations

of amplify-and-forward cooperation in the first place. As such, we consider a packet

detection scheme that is agnostic to the particular coding scheme that is employed:

energy detection.

In the role of packet detection, energy detection is intuitively very satisfying. If a

relay detects a large amount of energy, it can decide that the source is transmitting.

If a small amount of energy is detected, it might decide that the energy is only due to

noise. From an implementation standpoint, this detection scheme is also attractive

in that it is virtually free. All radios provide some sort of received signal strength

indicator (RSSI). This entire detection scheme amounts to comparing this value to



47

a threshold. It should be noted that the purpose of this chapter is not to determine

an optimal energy thresholding scheme. Instead, we will propose a variety schemes

and show that one of them is capable of producing the desired performance without

making any claims as to the uniqueness of that solution.

In this chapter, we analyze the performance of an energy detection strategy and

combine the results with those from Chapter 2 to discuss the likelihood of the various

states in our system as functions of average SNR.
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Successful Detection of No Packet

Missed Detection of Packet

False Alarm on No Packet

Figure 3.1: Packet detection events

In particular, we would like to analyze this energy detector in order to assign the

probabilities of the packet detection events depicted again in Figure 3.1 to functions

of average SNR as well as to instantaneous channel channel realizations.

Energy detection is a well-studied problem dating back to Urkowitz who studied

the problem of detection of unknown, but deterministic, signals in AWGN channels

[21]. In recent years, Digham has extended this work to a variety of different quasi-

static fading channels [22] [23]. In this chapter, we relax the deterministic assumption

in these prior works to consider energy detection of random signals. This relaxation

aligns this analysis to the random-coding arguments presented in Chapters 4 and 5.
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3.1 System Model and Nomenclature

Throughout this and later chapters, we adopt the following system model and nomen-

clature. In particular, we model the signal received by the relay as

yr [n] = hs,rMxs [n] + zr [n] , (3.1)

where n ∈ [0, 1, 2, . . . , L
2

]
(i.e. half of a frame), xs is assumed to be a zero-mean,

circularly symmetric Gaussian random vector of variance SNR, zr is assumed to be

a zero-mean, circularly symmetric Gaussian random vector of unit variance, and hs,r

is the instantaneous quasi-static channel realization assumed to be constant for the

duration of L. For the purposes of this chapter, the hs,r is assumed to be unknown

to the relay. Thus, energy detection is a non-coherent detection problem.

M =


0 source is idle

1 source is busy

(3.2)

represents the source’s state. With this nomenclature in place, we can construct the

statistic that will be used by the energy detector to make a hard decision on the

presence of a packet or lack thereof. This decision is the energy of the vector, or

equivalently, the sum of squared amplitudes of the vector elements. Formally,

S =

L
2∑

n=1

|
√

2 · yr [n] |2 (3.3)

where the
√

2 is simply a scaling factor that eases the notation later in the analysis.

From this point, we consider the distribution on S for one of two hypotheses: nothing

is sent or something is sent. We represent the hypothesis by HM , where M is the

source activity defined in Equation (3.2).
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3.1.1 H0 - Idle Source Hypothesis

Given that source is idle, we can rewrite Equation (3.1) as

yr [n] = zr [n] .

Because we have constructed our decision statistic in Equation (3.3) with the
√

2 scale factor, the distribution on S under this hypothesis is simply a central Chi-

square distribution with L degrees of freedom.1 We will adopt the following notation

to capture these parameters:

S|H0 ∼ χ2
L (s) . (3.4)

Because we have fixed the noise variance in this system, the distribution on S

under this hypothesis does not depend on SNR or instantaneous channel realization.

3.1.2 H1 - Busy Source Hypothesis

Given that the source is busy, we can rewrite Equation (3.1) as

yr [n] = hs,rxs [n] + zr [n] .

Under this hypothesis, the decision statistic of Equation (3.3) is not simply a cen-

tral Chi-square distribution because the variance of yr is not normalized. Effectively,

this additional variance is a scale factor on the s-axis that spreads the distribution

outwards as a function of SNR and the instantaneous channel power. We notate this

1It should be noted that the length of the summation is only L
2 , but the degrees of freedom are

a full L. These extra degrees of freedom arise from the fact that the underlying Gaussian random
variable is complex.
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distribution as

S|H1 ∼
χ2
L

(
s

1+|hs,r|2SNR

)
1 + |hs,r|2SNR

. (3.5)

Intuitively, in the case of SNR = 0 or |hs,r|2 = 0, this expression reduces to the

same distribution as presented in Equation (3.4). By normalizing the noise vector in

this model, we have constructed the problem such that only hypothesis H1 depends

on SNR and instantaneous channel realization.

3.1.3 Probability of Packet Detection Errors

Combining Equations (3.4) and (3.4) yields

S ∼


χ2
L (x) H0

χ2
L

„
s

1+|hs,r |2SNR

«
1+|hs,r|2SNR

H1

, (3.6)

which represents the distribution of S for either hypothesis. With these distributions,

we are finally ready to assign functions relating the probabilities of the transitions

shown in Figure 3.1 to SNR and |hs,r|2.

3.1.3.1 Probability of False Alarm

The false alarm event represents the case where a particular noise vector has “too

much” energy. More formally,

PF = Pr{S > Λ|H0}, (3.7)

where Λ is the decision threshold in the system. This expression is equivalent to the

complement of the cumulative density function (CDF) of the distribution evaluated

at Λ. Because this CDF is known for central Chi-square distributions, we can write
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the probability of a false alarm event as

PF = 1− γ
(
L
2
, Λ

2

)
Γ
(
L
2

) = 1− P

(
L

2
,
Λ

2

)
, (3.8)

where γ is the lower incomplete Gamma function, Γ is the Gamma function, and P

is the regularized Gamma function. This expression relates the probability of false

alarms to the decision threshold Λ and the codeword length L.

3.1.3.2 Probability of Missed Detection

The missed detection event represents the case where a particular channel realization

suppresses the source’s energy below the required threshold. Formally,

PM = Pr{S < Λ|H1}, (3.9)

where Λ is the decision threshold in the system. This expression is the CDF of the

distribution evaluated at a Λ that is scaled according to the received SNR at the

relay. We write this missed detection probability as

PM =
γ
(
L
2
, Λ

2(1+|hs,r|2SNR)

)
Γ
(
L
2

) = P

(
L

2
,

Λ

2 (1 + |hs,r|2SNR)

)
, (3.10)

where γ is the lower incomplete Gamma function, Γ is the Gamma function, and P

is the regularized Gamma function. This expression relates the probability of missed

detections to the decision threshold Λ, the codeword length L, the average SNR, and

the instantaneous channel realization hs,r.

The remaining sections in this chapter will discuss the likelihood of the states

presented in Chapter 2 as functions of average SNR for energy detection with different

decision thresholding strategies at the relay.
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3.1.4 Exponential Order Nomenclature

Throughout this thesis, we use a convenient shorthand to represent the exponential

orders of functions of SNR. We define this shorthand in order to more concisely de-

scribe the trends of functions at large SNR values. By exponential order, we formally

mean that a function f (SNR) that satisfies

lim
SNR→∞

log f (SNR)

log SNR
= b (3.11)

has an exponential order of b. We denote this relationship with the shorthand

f (SNR) =̇ SNRb, (3.12)

where =̇ represents “equal in exponential order.” For example, KSNR−α
.
= SNR−α

for any K,α. The shorthand notations ≤̇ and ≥̇ are similarly defined. The use of

these symbols is identical to that in Azarian’s work [11].

3.2 Static Threshold Relay Detection

The first decision thresholding strategy we consider is that of static thresholds. In

this case, the relay compares its received energy to a constant that is fixed for all

values of average SNR.

This strategy places the threshold some fixed amount above the noise floor in the

system. The effect of this can be seen in Figure 3.2. In both the small and large SNR

plots, the threshold Λ is fixed to the same value. Because the probability density

function (pdf) of S|H0 does not depend on average SNR, the probability of false

alarms is a fixed number that also does not depend on average SNR. However, with

a large SNR, the probability of a missed detection is much smaller. As the pdf of

S|H1 spreads outwards with increasing SNR, much less area under the distribution is
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Figure 3.2: Static threshold

in the fixed region between zero and Λ.

Formally, let

Λ = K, (3.13)

where K is an arbitrary constant. Substituting this constant into Equations (3.8)

and (3.10) yields

PF = 1− P
(
L

2
,
K

2

)
(3.14)

PM = P

(
L

2
,

K

2 (1 +H · SNR)

)
, (3.15)

where H = |hs,r|2 is the instantaneous channel power. This substitution is merely to

ease notation. These expression can be substituted for the PF and PM terms that

appear in the equations in Sections 2.1.1 and 2.2.1. These substitutions, which we

will not explicitly carry out for the sake of brevity, relate the probability of each state

to three parameters: q (the source transmission probability), the average SNR, and

H (the instantaneous channel power). More formally, we write this substitution as
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PBi
(q, SNR, H) = PBi

(PF , PM) (3.16)

PIi (q, SNR, H) = PIi (PF , PM) , (3.17)

where i ∈ [1, 2, 3, 4, 5] for the OAF protocol and i ∈ [1, 2, 3, 4, 5, 6, 7] for the NAF

protocol. These expressions relate to an instantaneous channel draw and are not

immediately suitable to discussing overall trends with SNR. We consider a Rayleigh

fading channel model where H is distributed as an exponential random variable with

rate parameter λ = 1.1 Thus, we can average over the channel power distribution to

derive expressions relating the probability of each state to a function of only average

SNR and source transmission probability:

PBi
(q, SNR) =

∫ ∞
0

PBi
(q, SNR, H) e−H dH (3.18)

PIi (q, SNR) =

∫ ∞
0

PIi (q, SNR, H) e−H dH. (3.19)

Due to the complexity of the integrands in these expressions, these integrals are

analytically intractable. However, adaptive numerical quadrature can still lend sig-

nificant insights on the behavior of these states for both the OAF and NAF protocols.

3.2.1 Effect on OAF States

In this section, we discuss the effect of a static energy detection threshold on the

state probabilities of the OAF protocol. In particular, we are most interested in their

high-SNR behavior.

Figure 3.3(a) shows the busy state likelihoods for a small threshold of Λ = 10,

1This distribution comes from |hs,r|2 where hs,r ∼ C (0, 1), a zero-mean unit-variance circularly
symmetric Gaussian random variable.
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Figure 3.3: Likelihood of busy states for different static thresholds

while Figure 3.3(b) shows the busy state likelihoods for a larger threshold of Λ = 20.

In both cases, the asymptotic behavior is the same. States B1, B4, B5 do not decay

in likelihood with increasing SNR. Recalling Figure 2.3, this is a good thing for B1; it

represents the best case where the relay actively helps the source’s transmission. We

certainly would not want its likelihood to decay with increasing SNR. However, for

states B4 and B5, this is unfortunate; the relay actively interferes with the source’s

transmission due to a false alarm in the previous frame which makes them the worst

cases in the system. States B2 and B3 decay with the same slope as SNR−1.
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Figure 3.4: Likelihood of idle states for different static thresholds

Every idle state in the system does not decay in likelihood with SNR.
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In summary, the probability of the OAF states for a static energy detection thresh-

old are:

PB1|Λ=K =̇ SNR0 (3.20)

PB2|Λ=K =̇ SNR−1 (3.21)

PB3|Λ=K =̇ SNR−1 (3.22)

PB4|Λ=K =̇ SNR0 (3.23)

PB5|Λ=K =̇ SNR0 (3.24)

PI1|Λ=K =̇ SNR0 (3.25)

PI2|Λ=K =̇ SNR0 (3.26)

PI3|Λ=K =̇ SNR0 (3.27)

PI4|Λ=K =̇ SNR0 (3.28)

PI5|Λ=K =̇ SNR0, (3.29)

where =̇ is the shorthand notation defined in Section 3.1.4. The salient point here

is that some error states do not decay with SNR.
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3.2.2 Effect on NAF States

In this section, we analyze the effects of static threshold energy detection on the

likelihood of states under the NAF protocol.
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Figure 3.5: Likelihood of busy states for different static thresholds

We can immediately observe that, regardless of the particular static threshold

value, states B1, B4, and B6 do not decay in likelihood with SNR. Like under the OAF

protocol, these states represent the best case and two of the worst cases respectively.
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Figure 3.6: Likelihood of idle states for different static thresholds

Also similar to the OAF protocol, the likelihood of the idle states do not decay

with SNR.
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In summary, the probability of the NAF states for a static energy detection thresh-

old are:

PB1|Λ=K =̇ SNR0 (3.30)

PB2|Λ=K =̇ SNR−1 (3.31)

PB3|Λ=K =̇ SNR−1 (3.32)

PB4|Λ=K =̇ SNR0 (3.33)

PB5|Λ=K =̇ SNR−1 (3.34)

PB6|Λ=K =̇ SNR0 (3.35)

PB7|Λ=K =̇ SNR−1 (3.36)

PI1|Λ=K =̇ SNR0 (3.37)

PI2|Λ=K =̇ SNR0 (3.38)

PI3|Λ=K =̇ SNR0 (3.39)

PI4|Λ=K =̇ SNR0 (3.40)

PI5|Λ=K =̇ SNR0 (3.41)

PI6|Λ=K =̇ SNR0 (3.42)

PI7|Λ=K =̇ SNR0. (3.43)

The salient point here is that some error states do not decay with SNR.
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3.3 Dynamic Threshold Relay Detection

We now consider a different class of energy thresholding strategies at the relay. In

this class, we assume the relay has access to the average SNR parameter in the system

so it can adaptively shift its energy threshold with that parameter. In the three-node

scenario we are studying, this is reasonable to assume. However, in more complicated

topologies, this assumption is more problematic. While we will not explicitly study

any such topologies in this work, it is worthwhile to briefly describe the additional

complexities that will be faced in this extension. For example, consider a multiple

source system where path loss (i.e. large-scale fading) is considered.

Small
Path 
Loss

R

1

2S

S

Large
Path 
Loss

Figure 3.7: Path Loss scenario

In this scenario, one source is significantly closer to the relay than the other source.

The effective received average SNR is larger for one source than the other. Because

this is a random access system, the relay does not know which source, if any, will be



60

transmitting in the immediate future. As such, it cannot know the average SNR a

priori without an additional handshaking protocol to tell the relay which source it

will be helping, and thus the average SNR it can expect. In the work presented in this

thesis, we do not consider what such a protocol would be, but rather acknowledge that

any gains associated with a dynamic energy detection threshold should be weighed

against the increased overhead of the system.

10 20 30 40

0.02

0.04

0.06

0.08

Pr
ob
ab
ilit
y

pS|H0

pS|H1

Λ

PF

PM

s

(a) Small SNR

10 20 30 40

0.02

0.04

0.06

0.08

s
Pr
ob
ab
ilit
y

pS|H0

pS|H1

Λ

PFPM

(b) Large SNR

Figure 3.8: Dynamic threshold

The effect of a dynamic energy detection threshold can be seen in Figure 3.3. In

the large SNR plot, the threshold Λ is shifted further right. This effectively scales

both PM and PF as functions of SNR. Specifically, we consider two specific forms of

dynamic energy detection thresholds. The first form is that of

Λ = K1 +K2 · log (1 + SNR) , (3.44)

where K1 and K2 are arbitrary constants, and log is the natural logarithm.1 We

will describe this strategy with logarithmic dependence on SNR as a “slow” dynamic

threshold.

The next strategy we consider is that of

Λ = K1 +K2 · SNR, (3.45)

1Unless otherwise stated, all logarithms in this thesis are base-e
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where K1 and K2 are arbitrary constants. Analogously, this strategy will be known

as a “fast” dynamic threshold due the lack of the logarithm.

In precisely the same way as the static threshold analysis, these decision thresholds

can be substituted into Equations (3.8) and (3.10) to yield expressions that relate

the probabilities of packet detection errors to average SNR as well as instantaneous

channel realizations. Those expressions, in turn, can be substituted into the state

probability expressions of Sections 2.1.1 and 2.2.1 and then numerically integrated

over channel realizations.
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3.3.1 Effect on OAF States

In this section, we discuss the effect of the different dynamic energy threshold strate-

gies on the state probabilities of the OAF protocol.
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Figure 3.9: Likelihood of busy states for different dynamic thresholds

As can be seen in Figure 3.3.1, these different strategies each produce radically

different behaviors in the dependence of the state likelihoods on average SNR. Fig-

ures 3.9(a) and 3.9(b) show two examples of the “slow” dynamic threshold strategy

presented in Equation (3.44). In Figure 3.9(a), we see that, while B4 and B5 at least

decay somewhat with average SNR, they still decay slower than an exponential order

of one. By increasing the K2 parameter of Equation (3.44), we see that these states

can decay arbitrarily fast in Figure 3.9(b). In fact, the only parameter-independent

exponential orders in the system are associated with B1, which does not decay, and

B2, which decays with an exponential order of one.

In Figures 3.9(c) and 3.9(d), the “fast” dynamic threshold is employed at the
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relay. The effect can be seen in states B3, B4, and B5. These are all suboptimal

states where the relay is not helping the system, and they all decay exponentially

fast with SNR. However, state B2 does not decay at all. In effect, the fast dynamic

threshold is simply too fast. It makes some error states disappear very quickly but

only at the cost of making another error state remain even at high SNR values.
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Figure 3.10: Likelihood of idle states for different dynamic thresholds

Much of the same can behavior can be observed in the idle states of Figure 3.3.1.

For a slow dynamic threshold (with sufficiently large K2) errors can decay arbitrarily

fast. For a fast dynamic threshold, those errors decay exponentially fast.
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For slow dynamic thresholding, the probabilities of each OAF state are

PB1|Λ=K1+K2·log(1+SNR) =̇ SNR0 (3.46)

PB2|Λ=K1+K2·log(1+SNR) =̇ SNR−1 (3.47)

PB3|Λ=K1+K2·log(1+SNR) =̇ SNR−K (3.48)

PB4|Λ=K1+K2·log(1+SNR) =̇ SNR−K (3.49)

PB5|Λ=K1+K2·log(1+SNR) =̇ SNR−K (3.50)

PI1|Λ=K1+K2·log(1+SNR) =̇ SNR0 (3.51)

PI2|Λ=K1+K2·log(1+SNR) =̇ SNR−K (3.52)

PI3|Λ=K1+K2·log(1+SNR) =̇ SNR−K (3.53)

PI4|Λ=K1+K2·log(1+SNR) =̇ SNR−K (3.54)

PI5|Λ=K1+K2·log(1+SNR) =̇ SNR−K , (3.55)

where the Ks are arbitrary, but not necessarily identical, positive-valued constants.

The salient point here is that all error states (i.e. neutral and worst case states) decay

with at least an exponential order of one.
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For fast dynamic thresholding, the probabilities of each OAF state are

PB1|Λ=K1+K2·SNR =̇ SNR0 (3.56)

PB2|Λ=K1+K2·SNR =̇ SNR0 (3.57)

PB3|Λ=K1+K2·SNR =̇ SNR−∞ (3.58)

PB4|Λ=K1+K2·SNR =̇ SNR−∞ (3.59)

PB5|Λ=K1+K2·SNR =̇ SNR−∞ (3.60)

PI1|Λ=K1+K2·SNR =̇ SNR0 (3.61)

PI2|Λ=K1+K2·SNR =̇ SNR−∞ (3.62)

PI3|Λ=K1+K2·SNR =̇ SNR−∞ (3.63)

PI4|Λ=K1+K2·SNR =̇ SNR−∞ (3.64)

PI5|Λ=K1+K2·SNR =̇ SNR−∞. (3.65)

The salient point here is that some error states do not decay with SNR.
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3.3.2 Effect on NAF States

In this section, we discuss the effect of the different dynamic energy threshold strate-

gies on the state probabilities of the NAF protocol.
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Figure 3.11: Likelihood of busy states for different dynamic thresholds

In Figure 3.3.2, we can see the effects of the different dynamic thresholding strate-

gies on the NAF state likelihoods. Figures 3.11(a) and 3.11(b) show the effect of the

slow dynamic threshold. With sufficiently large K2 in equation 3.44, the probabilities

of worst case states B4 and B5 decay arbitrarily fast with SNR. However, the other

two worst case states, B6 and B7, decay no faster than an exponential order of one.

The only state that does not decay with SNR is, as expected, the best case B1.

In Figures 3.11(c) and 3.11(d), we can see the effects of the fast dynamic thresh-

old. Like in the OAF protocol, the fast dynamic threshold makes some states decay

exponentially fast with SNR (B4 and B5). However, this comes at the cost of the

decay rate of the other error states. Every other state in the system does not decay
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with SNR.
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Figure 3.12: Likelihood of idle states for different dynamic thresholds

We see similar behavior in the idle states of the NAF protocol. In the case of the

slow dynamic threshold, all error states decay with at least an exponential order of

one. In the case of the fast dynamic threshold, some error states decay exponentially

fast while another error state does not decay at all.
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To summarize, the probabilities of each NAF state under the slow dynamic thresh-

olding scheme decay with SNR according to

PB1|Λ=K1+K2·log(1+SNR) =̇ SNR0 (3.66)

PB2|Λ=K1+K2·log(1+SNR) =̇ SNR−1 (3.67)

PB3|Λ=K1+K2·log(1+SNR) =̇ SNR−1 (3.68)

PB4|Λ=K1+K2·log(1+SNR) =̇ SNR−K (3.69)

PB5|Λ=K1+K2·log(1+SNR) =̇ SNR−K (3.70)

PB6|Λ=K1+K2·log(1+SNR) =̇ SNR−1 (3.71)

PB7|Λ=K1+K2·log(1+SNR) =̇ SNR−1 (3.72)

PI1|Λ=K1+K2·log(1+SNR) =̇ SNR0 (3.73)

PI2|Λ=K1+K2·log(1+SNR) =̇ SNR−K (3.74)

PI3|Λ=K1+K2·log(1+SNR) =̇ SNR−K (3.75)

PI4|Λ=K1+K2·log(1+SNR) =̇ SNR−K (3.76)

PI5|Λ=K1+K2·log(1+SNR) =̇ SNR−K (3.77)

PI6|Λ=K1+K2·log(1+SNR) =̇ SNR−1 (3.78)

PI7|Λ=K1+K2·log(1+SNR) =̇ SNR−K . (3.79)

The salient point here is that all error states (i.e. neutral and worst case states) decay

with at least an exponential order of one.
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The probabilities of each NAF state under the fast dynamic thresholding scheme

decay with SNR according to

PB1|Λ=K1+K2·SNR =̇ SNR0 (3.80)

PB2|Λ=K1+K2·SNR =̇ SNR0 (3.81)

PB3|Λ=K1+K2·SNR =̇ SNR0 (3.82)

PB4|Λ=K1+K2·SNR =̇ SNR−∞ (3.83)

PB5|Λ=K1+K2·SNR =̇ SNR−∞ (3.84)

PB6|Λ=K1+K2·SNR =̇ SNR0 (3.85)

PB7|Λ=K1+K2·SNR =̇ SNR0 (3.86)

PI1|Λ=K1+K2·SNR =̇ SNR0 (3.87)

PI2|Λ=K1+K2·SNR =̇ SNR−∞ (3.88)

PI3|Λ=K1+K2·SNR =̇ SNR−∞ (3.89)

PI4|Λ=K1+K2·SNR =̇ SNR−∞ (3.90)

PI5|Λ=K1+K2·SNR =̇ SNR−∞ (3.91)

PI6|Λ=K1+K2·SNR =̇ SNR0 (3.92)

PI7|Λ=K1+K2·SNR =̇ SNR−∞. (3.93)

Under the fast dynamic thresholding scheme, several error states do not decay at all.
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3.4 Summary

With this analysis in place, we know how likely the various states in the system are

to occur as functions of SNR. We summarize these exponential orders of decay for

the OAF and NAF protocols in the following tables:

Static Slow Dynamic Fast Dynamic
Λ=K Λ=K1+K2·log(1+SNR) Λ=K1+K2·SNR

Best 0 0 0
Neutral −1 −1 0
Worst 0 −K −∞

Table 3.1: Summary of state likelihoods for OAF

Static Slow Dynamic Fast Dynamic
Λ=K Λ=K1+K2·log(1+SNR) Λ=K1+K2·SNR

Best 0 0 0
Neutral −1 −1 0
Worst 1 0 −K −∞
Worst 2 0 −1 0

Table 3.2: Summary of state likelihoods for NAF

Under the static and fast dynamic threshold schemes, there exist error states that

do not decrease in likelihood with SNR. However, with the slow dynamic threshold

scheme, all error states decrease in likelihood. Intuitively, this slow dynamic threshold

scheme should yield higher performance in the random access cooperative system as

compared to the other two schemes. To quantify this comparison, we analyze the

outage performance of the OAF and NAF random access systems in the following

chapters. Specifically, we analyze the performance of the systems given any one of

the network states. By combining this along with the state likelihoods presented thus

far, we can finally discuss the performance of the random access cooperative systems

as a whole.



Chapter 4

Orthogonal Amplify-and-Forward Analysis

The previous chapters culminated in answering the question of how often all the net-

work states occur in the system. This chapter first answers the question of how much

those states help or hurt. To accomplish this, we perform analysis to determine the

conditional outage performance of the cooperative system given a particular network

state.

Outage probability is a convenient error metric for delay-constrained systems. In

these systems, no Shannon capacity exists in the sense that no rate can guarantee

reliable communications [24]. Because of this, outage probability represents a funda-

mental lower bound on frame error probability.

The analysis in this chapter is coherent, which assumes receiving nodes have per-

fect knowledge of channel effects. This is a common assumption in the literature and

serves as a best case bound on the performance of a system where errors in chan-

nel estimation can occur. Second, this chapter combines these results with the state

likelihoods of Chapter 3 to discuss the total performance of the OAF protocol in a

random-access environment.
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4.1 Conditional Performance

Recalling the classifications in Section 2.1 for the OAF protocol, there are three cases

of interest in this network: best, neutral, and worst. In the following sections, we

analyze the performance of the system given these cases.

4.1.1 Best Case

The first case we consider is the best, where the relay successfully detects the source’s

packet and forwards its received waveform in the following slot.

S1 P+N

P 0

R

S

Figure 4.1: Best case state: B1

Only state B1 in the system exhibits this behavior. In this state, the system is

equivalent to the scheduled-access system presented by Laneman [8]. As such, the

outage analysis given this state is exactly the same. For completion, we reproduce

this analysis here.

For a codeword of length L (i.e. frame length), the destination node receives

yd [n] = hs,dxs [n] + zd [n] (4.1)

during the first slot, where hs,d is the fading between the source and destination, xs [n]

is the source’s codeword, zd [n] is noise at the destination, and n ∈ [0, 1, 2, . . . , L
2

]
.

In this Amplify-and-Forward protocol, the relay transmits a scaled version of what it
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receives during the second slot of the frame. Formally,

xr

[
n+

L

2

]
= βyr [n] = β (hs,rxs [n] + zr [n]) , (4.2)

for the same n ∈ [0, 1, 2, . . . , L
2

]
. Additional parameters include hs,r (the fading

between the source and relay), zr (the noise at the relay), and β (an amplitude

scaling factor at the relay).

In the second slot, the destination receives a noisy version of the relay’s transmis-

sion. Thus,

yd

[
n+

L

2

]
= hr,dxr

[
n+

L

2

]
+ zd

[
n+

L

2

]
(4.3)

yd

[
n+

L

2

]
= hr,dβhs,rxs [n] + hr,dβzr [n] + zd

[
n+

L

2

]
, (4.4)

where hr,d is the fading between relay and destination and n ∈ [0, 1, 2, . . . , L
2

]
.

We assume an average power constraint that is the same for both the source and

the relay. This symmetry assumption only serves to ease the notation in the analysis

that follows. It is by no means a fundamental assumption and can easily be relaxed

to consider a more general case. Specifically, average power of the signals in a frame

are assumed to be

E
[
z†rzr

]
= E

[
z†dzd

]
= 1 (4.5)

E
[
x†sxs

]
= E

[
x†rxr

]
= SNR, (4.6)
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and hence this requires the relay amplitude scaling factor to be

β =

√
SNR

|hs,r|2SNR + 1
. (4.7)

To analyze this system, we can perform a simple manipulation to transform it into

a virtual multi-antenna system. Instead of the destination receiving during two time

slots, we can model this system as a destination that simultaneously receives over two

spatially separated antennas. The model for this [2× 1] multi-antenna system can be

represented as

yd[n] = Axs[n] + Bz[n]

 yd[n]

yd[n+ L
2
]

 =

 hs,d

hr,dβhs,r

xs[n] +

 0 1 0

hr,dβ 0 1




zr[n]

zd[n]

zd[n+ L
2
]

 .
(4.8)

With this model in place, we can derive the maximum mutual information be-

tween scalar xs and vector yd in order to determine the maximum instantaneous rate

supported by the channel for given channel gains. For brevity, this derivation is pre-

sented in Appendix A.1. From Equation (A.1), we can express this maximum mutual

information for unit bandwidth as

IBest(xs; yd) ≤ 1

2
log

(
1 +

SNR|hr,dβhs,r|2
|hr,dβ|2 + 1

+ SNR|hs,d|2
)
, (4.9)

where an additional factor of 1
2

has been included to capture the effect of taking

two slots for a single transmission. After substituting the relay scale factor of Equa-

tion (4.7) and performing algebraic simplifications, we express the maximum mutual
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information as

IBest(xs; yd) ≤ 1

2
log
(
1 + SNR|hs,d|2 + f

(
SNR|hs,r|2, SNR|hr,d|2

))
, (4.10)

where f (x, y) = xy
x+y+1

. For Rayleigh fading (i.e. |hi,j|2 ∼ exponential random vari-

able with parameter λi,j), there is some probability of the maximum mutual informa-

tion falling below some transmit rate R (nats per second). This event, known as an

outage event, represents a fundamental loss of support from the wireless channel and

effectively forms a lower bound on probability of error. Formally, the outage event

can be defined as

max
xs

IBest(xs; yd) < R. (4.11)

Rewriting Equation (4.10), the outage event can be represented by

SNR|hs,d|2 + f
(
SNR|hs,r|2, SNR|hr,d|2

)
< e2R − 1. (4.12)

Explicitly calculating the probability of the outage event in Equation (4.12) is

intractable, but we can invoke the main theorem proven in a different work from

Laneman to obtain a high SNR approximation [25]. This theorem says that, for any

independent random variables Us, Vs with the properties

lim
s→∞

sP [Us < t] = g (t) (4.13)

lim
s→∞

sdP [Vs < t] = h (t) , (4.14)

where g (t) and h (t) are monotone increasing and integrable, and g′ (t) is integrable,
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then

lim
s→∞

sd+1P [Us + Vs < t] =

∫ t

0

h (t− x) g′ (x) dx. (4.15)

We now revisit the outage event in Equation (4.12) with the substitutions s =

SNR, Us = SNR|hs,d|2, Vs = f (SNR|hs,r|2, SNR|hr,d|2), d = 1, and t = e2R− 1. Thus,

the outage event can simply be written as

Us + Vs < t, (4.16)

and Equation (4.15) can be used to determine the probability of outage

PO|Best ≈ 1

s2
lim
s→∞

s2P [Us + Vs < t] =
1

s2

∫ t

0

h (t− x) g′ (x) dx. (4.17)

To determine the functions g (t) and h (t) necessary to find this quantity, we

invoke Fact C.0.1 and Claim C.0.2 respectively from Appendix C. Specifically, with

the additional substitution W = |hs,d|2, Fact C.0.1 satisfies the first condition in

Equation (4.13) with

lim
s→∞

sP [Us < t] = λs,dt = g (t) . (4.18)

With the additional substitutions U = |hs,r|2 and V = |hr,d|2, Claim C.0.2 satisfies

the second condition in Equation (4.14) with

lim
s→∞

sP [Vs < t] = (λs,r + λr,d) t = h (t) . (4.19)

Finally we can combine Equations (4.17), (4.18), and (4.19) to determine the high

SNR approximate outage probability
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PO|Best ≈ 1

s2

∫ t

0

(λs,r + λr,d) (t− x)λs,ddx (4.20)

=
1

s2
(λs,r + λr,d)λs,dt

2 (4.21)

=
1

SNR2 (λs,r + λr,d)λs,d
(
e2R − 1

)2
(4.22)

=

(√
2

(λs,r + λr,d)λs,d
· SNR

e2R − 1

)−2

, (4.23)

which exactly matches the results from Laneman [8], [25]. The probability of an

outage event decays with exponential order two,1 or

PO|Best =̇ SNR−2. (4.24)

We can verify the high SNR behavior of the outage probability via Monte Carlo

simulation.
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Figure 4.2: Best case outage probability Monte Carlo simulation (R = 1
2

and λs,d =
λs,r = λr,d = 1)

Figure 4.2 shows a tight match between the analytical expression and the Monte

Carlo simulation data points for high SNR. The above analysis of the best case states

1This is equivalently described as a diversity order two system.



78

that, when the relay correctly detects a source transmission, the performance gains

in the system are exactly those that we would expect from previous work analyzing

a fully scheduled system.

4.1.2 Neutral Case

The second case we consider is the neutral one, where the relay neither helps nor

hurts the source’s transmission because it never transmits.

S2M
P 0

R

S

(a) B2

FM
P 0

R

S

(b) B3

Figure 4.3: Neutral case states

States B2 and B3 exhibit this behavior. In both of these states, the relay is sensing

the medium during both slots, thereby never transmitting. We analyze the outage

probability of this case via a similar methodology to the analysis of the best case in

Section 4.1.1. Specifically, we assume all of the same parameters as before and merely

change the expressions to account for the lack of relay transmission during the second

slot. In the first slot, the destination receives

yd [n] = hs,dxs [n] + zd [n] . (4.25)

However, during the second slot, the destination receives only the thermal noise

at the destination, or

yd

[
n+

L

2

]
= zd

[
n+

L

2

]
. (4.26)
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Transforming this into a 1× 2 multi-antenna system results in the matrix formu-

lation of

yd[n] = Axs[n] + Bz[n]

 yd[n]

yd[n+ L
2
]

 =

hs,d
0

xs[n] +

0 1 0

0 0 1




zr[n]

zd[n]

zd[n+ L
2
]

 .
(4.27)

Like before, we can derive the maximum mutual information between scalar xs and

vector yd in order to determine the maximum instantaneous rate supported by the

channel for given channel gains. For brevity, this derivation is presented in Appendix

A.2. From Equation (A.2), we can express this maximum mutual information as

INeutral(xs; yd) ≤ 1

2
log
(
1 + SNR|hs,d|2

)
, (4.28)

which is exactly the capacity expression of a point-to-point SISO link under quasi-

static fading, except for the factor of 1
2

to account for the two time slots it takes to send

a single message. Intuitively, this is very satisfying; when the relay is effectively “off,”

the system is simply a point-to-point single-antenna link. Because of the simplicity

of this expression, the outage probability can be directly computed without need for

a high SNR approximation. Formally, the outage event can be defined as

max
xs

INeutral(xs; yd) < R. (4.29)

Solving for the random channel power |hs,d|2 yields

|hs,d|2 < e2R − 1

SNR
, (4.30)

where |hs,d|2 is an exponential random variable with parameter λs,d. The probability

of this event occurring is simply the CDF of the exponential random variable evaluated
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at this point. Formally,

PO|Neutral = 1− eλs,d
e2R−1
SNR (4.31)

PO|Neutral =̇ SNR−1. (4.32)

For the neutral case, the system has lost the diversity order improvement as-

sociated with the relay. We can verify this SNR dependence with a Monte Carlo

simulation.
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Figure 4.4: Neutral case outage probability Monte Carlo simulation (R = 1
2

and
λs,d = 1)

Figure 4.4 shows a tight match between the analytical expression and the Monte

Carlo simulation data points.
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4.1.3 Worst Case

The final case we consider is the worst, where the relay actively impedes the source’s

communication by transmitting noise during the first slot of the frame.

S2

P

N

0

R

S

(a) B4

FN

P 0

R

S

(b) B5

Figure 4.5: Worst case states

States B4 and B5 exhibit this behavior. To calculate the outage probability of the

system given this state, we assume all of the same parameters as before and merely

change the expressions to account for the relay’s noise transmission during the first

slot. In the first slot, the destination receives

yd [n] = hs,dxs [n] + zd [n] + hr,dβzr

[
n− L

2

]
, (4.33)

where zr
[
n− L

2

]
is the noise at the relay during the second slot of the previous

frame. During the second slot, the destination receives only the thermal noise at the

destination, or

yd

[
n+

L

2

]
= zd

[
n+

L

2

]
. (4.34)

Transforming this into a 1× 2 multi-antenna system results in the matrix formu-
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lation of

yd[n] = Axs[n] + Bz[n]

 yd[n]

yd[n+ L
2
]

 =

hs,d
0

xs[n] +

hr,dβ 1 0

0 0 1



zr[n− L

2
]

zd[n]

zd[n+ L
2
]

 .
(4.35)

Like before, we can derive the maximum mutual information between scalar xs and

vector yd in order to determine the maximum instantaneous rate supported by the

channel for given channel gains. For brevity, this derivation is presented in Appendix

A.3. From Equation (A.3), we can express this maximum mutual information as

IWorst(xs; yd) ≤ 1

2
log

(
1 +

SNR|hs,d|2
|hr,dβ|2 + 1

)
. (4.36)

This equation says that the relay only serves to reduce the effective SNR in the

system by the scaling factor β and the instantaneous channel gain hr,d. As will

become clear later in the chapter, we only need to consider analytically convenient,

loose bounds on this mutual information. Noting that Equation (4.36) is a decreasing

function of β, we can loosely upper bound the maximum mutual information by

assigning β = 0. To loosely lower bound the maximum mutual information, we can

assume that the capacity of the link in the worst case is zero. More formally,

0 ≤ max
xs

IWorst(xs; yd) =
1

2
log

(
1 +

SNR|hs,d|2
|hr,dβ|2 + 1

)
≤ 1

2
log
(
1 + SNR|hs,d|2

)
. (4.37)

Notice that the upper bound on the maximum mutual information expression in

Equation (4.37) is identical to that in the neutral case of Section 4.1.2. In that Equa-

tion (4.31), we determined outage probability of that maximum mutual information.
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Thus, we can write the bounds on the outage probability of the worst case as

1 ≥ PO|Worst ≥ 1− eλs,d
e2R−1
SNR . (4.38)

Using the exponential order shorthand yields

SNR0 ≥̇ PO|Worst ≥̇ SNR−1. (4.39)
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Figure 4.6: Worst case outage probability bounds

Figure 4.6 shows these bounds on the outage probability of the worst case. At

best, the worst case behaves like the neutral case. At worst, we assume the worst

case is permanently in outage.
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4.2 Total Performance

Finally, all of the groundwork has been laid in order to discuss the overall performance

of the OAF protocol in a random-access environment. There are two critical pieces

here: the likelihood of states and the performance given each of those states. We use

the law of total probability to combine these two pieces. Formally,

PO =
1

q

(
PB1 · PO|Best + (PB2 + PB3) · PO|Neutral + (PB4 + PB5) · PO|Worst

)
, (4.40)

where the 1/q term scales the state likelihoods so that PB1 +PB2 +PB3 +PB4 +PB5 = 1.

In the following sections, we will revisit the different energy detection thresholding

strategies in order to discuss this overall system performance.

4.2.1 Static Relay Detection

Equations (3.20) - (3.24) express the exponential orders of the state probabilities for

a static relay threshold (i.e. Λ = K). To summarize, the best case and worst cases

do not decay in likelihood with SNR, but the neutral cases decay with exponential

order one. Substituting these likelihoods into Equation 4.40 yields

PO|Λ=K ∝
(
SNR0 · PO|Best + SNR−1 · PO|Neutral + SNR0 · PO|Worst

)
. (4.41)

Equations (4.24), (4.32), and the optimistic loose bound in (4.39) express the

exponential orders of the outage probabilities given the different cases. Substituting

these probabilities into the total outage probability expression yields
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PO|Λ=K ≥̇ (
SNR0 · SNR−2 + SNR−1 · SNR−1 + SNR0 · SNR−1

)
=̇

(
SNR−2 + SNR−2 + SNR−1

)
PO|Λ=K ≥̇ SNR−1. (4.42)

Equations (4.24), (4.32), and the pessimistic loose bound in (4.39) express the

exponential orders of the outage probabilities given the different cases. Substituting

these probabilities into the total outage probability expression yields

PO|Λ=K ≤̇ (
SNR0 · SNR−2 + SNR−1 · SNR−1 + SNR0 · SNR0

)
=̇

(
SNR−2 + SNR−2 + SNR0

)
PO|Λ=K ≤̇ SNR0. (4.43)

Combining the bounds yields

SNR−1 ≤̇ PO|Λ=K ≤̇ SNR0. (4.44)

Even with an optimistic loose bound on outage probability of the worst case, the

best possible diversity order is one. In other words, with a static energy detection

threshold at the relay, full diversity is impossible. We can verify this behavior via

Monte-Carlo simulation.
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Figure 4.7: Outage Probability with Λ = 20

Figure 4.7 shows that the performance with presence of the altruistic relay in the

network performs asymptotically no better than having no relay in all. In fact, it is

possible that the performance could be asymptotically worse than not cooperating.

We now turn to dynamic relay thresholds to determine if this problem can be avoided.

4.2.2 Dynamic Relay Detection

Recall from Chapter 3 that we can analyze the performance of the system under

two forms of dynamic thresholding strategies. In the case that the threshold changes

logarithmically with SNR, we call the strategy a slow dynamic threshold. In the

case that the threshold changes proportionally with SNR, we call the strategy a fast

dynamic threshold. In the following sections, we analyze the effects of both of these

strategies on overall system performance.

4.2.2.1 Slow Dynamic Threshold

Equations (3.46) - (3.50) express the exponential orders of the state probabilities for

a slow dynamic relay threshold (i.e. Λ = K1 +K2 · log (1 + SNR)). Substituting these
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probabilities into the total outage probability expression yields

PO|Λ=K1+K2·log(1+SNR) ∝
(
SNR0 · PO|Best + SNR−1 · PO|Neutral + SNR−K · PO|Worst

)
.

(4.45)

Equations (4.24) and (4.32) express the exponential orders of the outage proba-

bilities given the different cases. Additionally, we will first use the optmistic bound

on the outage probability of the worst case from Equation (4.39). Substituting these

probabilities into the total outage probability expression yields a lower bound on

outage probability of

PO|Λ=K1+K2·log(1+SNR) ≥̇ (
SNR0 · SNR−2 + SNR−1 · SNR−1 + SNR−K · SNR−1

)
=̇

(
SNR−2 + SNR−2 + SNR−K

)
PO|Λ=K1+K2·log(1+SNR) ≥̇ SNR−2. (4.46)

Next, we will use the highly pessimistic bound on the outage probability of the

worst case from Equation (4.39). This bound assumes the network goes into outage

whenever the worst case events occur. Substituting these probabilities into the total

outage probability expression yields

PO|Λ=K1+K2·log(1+SNR) ≤̇ (
SNR0 · SNR−2 + SNR−1 · SNR−1 + SNR−K · SNR0

)
=̇

(
SNR−2 + SNR−2 + SNR−K

)
PO|Λ=K1+K2·log(1+SNR) ≤̇ SNR−2. (4.47)
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Combining these two bounds yields

PO|Λ=K1+K2·log(1+SNR) =̇ SNR−2. (4.48)

As such, the diversity order is two, which is the full spatial diversity that can be

achieved. We can verify this behavior via Monte-Carlo simulation.
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Figure 4.8: Outage Probability with Λ = 20 + log (1 + SNR)

Figure 4.8 shows that that the slow dynamic thresholding strategy achieves full

spatial diversity.

4.2.2.2 Fast Dynamic Threshold

Equations (3.56) - (3.60) express the exponential orders of the state probabilities

for a fast dynamic relay threshold (i.e. Λ = K1 + K2 · SNR). Substituting these

probabilities into the total outage probability expression yields

PO|Λ=K1+K2·SNR ∝
(
SNR0 · PO|Best + SNR0 · PO|Neutral + SNR−∞ · PO|Worst

)
. (4.49)

Equations (4.24), (4.32), and the bounds of 4.39 express the exponential orders of
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the outage probabilities given the different cases. First, we establish a lower bound on

total outage probability by substituting these probabilities with the optimistic bound

of the worst case into the expression, yielding

PO|Λ=K1+K2·SNR ≥̇ (
SNR0 · SNR−2 + SNR0 · SNR−1 + SNR−∞ · SNR−1

)
=̇

(
SNR−2 + SNR−1 + SNR−∞

)
PO|Λ=K1+K2·SNR ≥̇ SNR−1. (4.50)

Similarly, we establish an upper bound on total outage probability by making use

of the pessimistic bound in Equation (4.39). This substitution yields

PO|Λ=K1+K2·SNR ≤̇ (
SNR0 · SNR−2 + SNR0 · SNR−1 + SNR−∞ · SNR0

)
=̇

(
SNR−2 + SNR−1 + SNR−∞

)
PO|Λ=K1+K2·SNR ≤̇ SNR−1. (4.51)

Combining the two bounds yields

PO|Λ=K1+K2·SNR =̇ SNR−1. (4.52)

Because the likelihood of the worst case states decays so fast, the outage proba-

bility of those states do not dominate the overall behavior of the system. However,

because the fast dynamic threshold makes the neutral case not decay with SNR, it

becomes the dominating term, yielding a diversity order of one. We can verify this

behavior via Monte-Carlo simulation.



90

10 100 1000 104 105
10!10

10!8

10!6

10!4

0.01

1

SNR−2

Relay Present

SNR−1

No Relay Present

1 10 100 1000 10
4

10
5

10
!10

10
!8

10
!6

10
!4

0.01

1

SNR
1 10 100 1000 10

4
10
5

10
!10

10
!8

10
!6

10
!4

0.01

1

O
ut

ag
e 

Pr
ob

ab
ilit

y

Figure 4.9: Outage Probability with Λ = 20 + SNR

Figure 4.9 shows that, asymptotically, the presence of the altruistic relay does not

aid the source’s ability to communicate when the relay’s energy detection uses a fast

dynamic threshold.

4.3 Summary

The first main result of this thesis regards the diversity order of the OAF protocol in

a random-access environment. We have shown that, in the case of a slow dynamic en-

ergy detection threshold that moves with the logarithm of average SNR, full diversity

can be achieved. Asymptotically, the random-access cooperative network performs

no worse than the scheduled cooperative network presented by Laneman [8].

However, we have also shown that in both the static threshold and the fast dy-

namic threshold cases, the network has a diversity-order loss relative to a scheduled

network. For the static threshold, the dominating error term arises from a constant

probability of states where the relay actively transmits noise during a frame. For the

fast dynamic threshold, the dominating error term arises from a constant probability

of states where the relay misses the detection of the source’s packet. In the next

chapter, we perform similar analysis to describe the effects on the NAF protocol.



Chapter 5

Non-Orthogonal Amplify-and-Forward Analysis

In this chapter we analyze the outage performance of the NAF protocol under the

various states presented in Chapter 2. We then combine these results with the state

likelihoods of Chapter 3 to discuss the total performance of the NAF protocol in a

random-access environment.

5.1 Conditional Performance

Recalling the classifications in Section 2.2 for the NAF protocol, there are four cases

of interest in this network: best, neutral, and two forms of the worst. In the following

sections, we analyze the performance of the system given these cases.

5.1.1 Best Case

The first case we consider is the best, where the relay successfully detects the source’s

packet and forwards its received waveform in the following slot.

Only state B1 in the system exhibits this behavior. For a codeword of length L

(i.e. frame length), the destination node receives

yd [n] = hs,dxs [n] + zd [n] (5.1)
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Figure 5.1: Best case state: B1

during the first slot, where hs,d is the fading between the source and destination, xs [n]

is the source’s codeword, zd [n] is noise at the destination, and n ∈ [0, 1, 2, . . . , L
2

]
.

In this Amplify-and-Forward protocol, the relay transmits a scaled version of what it

receives during the second slot of the frame. Formally,

xr

[
n+

L

2

]
= βyr [n] = β (hs,rxs [n] + zr [n]) , (5.2)

for the same n ∈ [0, 1, 2, . . . , L
2

]
. Additional parameters include hs,r (the fading

between the source and relay), zr (the noise at the relay), and β (an amplitude scaling

factor at the relay). In the second slot, the destination receives a noisy version of the

relay’s transmission. Additionally, we consider a specific form of the NAF protocol

where the source repeats its waveform in the second slot as well. Thus,

yd

[
n+

L

2

]
= hs,dxs [n] + hr,dxr

[
n+

L

2

]
+ zd

[
n+

L

2

]
(5.3)

yd

[
n+

L

2

]
= hs,dxs [n] + hr,dβhs,rxs [n] + hr,dβzr [n] + zd

[
n+

L

2

]
, (5.4)

where hr,d is the fading between relay and destination and n ∈ [0, 1, 2, . . . , L
2

]
.

We assume the same average power constraints as those presented in Chapter 4.

Like before, we analyze this system by performing a simple manipulation to transform

it into a virtual multi-antenna system. Instead of the destination receiving over two

time slots, we can model this system as a destination that receives over two spatially
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separated antennas. Thus, the model for this [2× 1] multi-antenna system can be

represented as

yd[n] = Axs[n] + Bz[n]

 yd[n]

yd[n+ L
2
]

 =

 hs,d

hs,d + hr,dβhs,r

xs[n] +

 0 1 0

hr,dβ 0 1




zr[n]

zd[n]

zd[n+ L
2
]

 .
(5.5)

With this model in place, we can derive the maximum mutual information be-

tween scalar xs and vector yd in order to determine the maximum instantaneous rate

supported by the channel for given channel gains. For brevity, this derivation is pre-

sented in Appendix B.1. From Equation (B.1), we can express this maximum mutual

information as

IBest(xs; yd) ≤ 1

2
log

(
1 +

SNR|hs,d + hr,dβhs,r|2
|hr,dβ|2 + 1

+ SNR|hs,d|2
)
, (5.6)

where the factor of 1
2

has been added to account for the two time slots necessary to

transmit a single message to the source.

We define an outage event to be

max
xs

IBest(xs; yd) < R. (5.7)

We can observe the high SNR behavior of this outage probability via Monte Carlo

simulation.

From Figure 5.2, we observe that the probability of an outage event decays with

exponential order two, or

PO|Best =̇ SNR−2. (5.8)
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Figure 5.2: Best case outage probability Monte Carlo simulation (R = 1
2

and λs,d =
λs,r = λr,d = 1)

When the relay is successfully detects a source transmission, full diversity is

achieved.

5.1.2 Neutral Case

The second case we consider is the neutral one, where the relay neither helps nor

hurts the source’s transmission because it never transmits.

M S1
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R

S

(a) B2

M
P

M
P

R

S

(b) B3

Figure 5.3: Neutral case states

States B2 and B3 exhibit this behavior. In both of these states, the relay is sensing

the medium during both slots, thereby never transmitting. We assume all of the same
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parameters as before and merely change the expressions to account for the lack of

relay transmission during the second slot. In the first slot, the destination receives

yd [n] = hs,dxs [n] + zd [n] . (5.9)

Because the relay is silent in the next slot, the destination receives only the source’s

retransmission, or

yd

[
n+

L

2

]
= hs,dxs [n] + zd

[
n+

L

2

]
. (5.10)

Transforming this into a 1× 2 multi-antenna system results in the matrix formu-

lation of

yd[n] = Axs[n] + Bz[n]

 yd[n]

yd[n+ L
2
]

 =

hs,d
hs,d

xs[n] +

0 1 0

0 0 1




zr[n]

zd[n]

zd[n+ L
2
]

 .
(5.11)

Like before, we can derive the maximum mutual information between scalar xs and

vector yd in order to determine the maximum instantaneous rate supported by the

channel for given channel gains. For brevity, this derivation is presented in Appendix

B.2. From Equation (B.2), we can express this maximum mutual information as

INeutral(xs; yd) ≤ 1

2
log
(
1 + 2 · SNR|hs,d|2

)
, (5.12)

which is exactly the capacity expression of a point-to-point SISO link under quasi-

static fading with an SNR improvement due to the additional power from the source.

Formally, the outage event can be defined as

max
xs

INeutral(xs; yd) < R. (5.13)
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Solving for the random channel power |hs,d|2 yields

|hs,d|2 < e2R − 1

2 · SNR
, (5.14)

where |hs,d|2 is an exponential random variable with parameter λs,d. The probability

of this event occurring is simply the CDF of the exponential random variable evaluated

at this point. Formally,

PO|Neutral = 1− eλs,d
e2R−1
2·SNR (5.15)

PO|Neutral =̇ SNR−1. (5.16)

In other words, for the neutral case, the system has lost the diversity order im-

provement associated with the relay. Despite having an analytical expression for the

outage probability of this case, we can verify the high-SNR behavior with a Monte

Carlo simulation.
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Figure 5.4: Neutral case outage probability Monte Carlo simulation

Figure 5.4 shows a tight match between the analytical expression and the Monte

Carlo simulation data points.
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5.1.3 Worst Case 1

The next case we consider is the one of the worst, where the relay actively impedes

the source’s communication by transmitting noise during the first slot of the frame.
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(b) B5

Figure 5.5: First worst case states

States B4 and B5 exhibit this behavior. To calculate the outage probability of the

system given this state, we assume all of the same parameters as before and merely

change the expressions to account for the relay’s noise transmission during the first

slot. In the first slot, the destination receives

yd [n] = hs,dxs [n] + zd [n] + hr,dβzr

[
n− L

2

]
, (5.17)

where zr
[
n− L

2

]
is the noise at the relay during the second slot of the previous frame.

During the second slot, the destination receives only the source’s retransmission, or

yd

[
n+

L

2

]
= hs,dxs [n] + zd

[
n+

L

2

]
. (5.18)

Transforming this into a 1× 2 multi-antenna system results in the matrix formu-
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lation of

yd[n] = Axs[n] + Bz[n]

 yd[n]

yd[n+ L
2
]

 =

hs,d
hs,d

xs[n] +

hr,dβ 1 0

0 0 1




zr[n]

zd[n]

zd[n+ L
2
]

 .
(5.19)

Like before, we can derive the maximum mutual information between scalar xs and

vector yd in order to determine the maximum instantaneous rate supported by the

channel for given channel gains. For brevity, this derivation is presented in Appendix

B.3. From Equation (B.3), we can express this maximum mutual information as

IWorst 1(xs; yd) ≤ 1

2
log

(
1 + SNR|hs,d|2 +

SNR|hs,d|2
|hr,dβ|2 + 1

)
. (5.20)

Comparing the worst case mutual information expression for the NAF protocol to

that for that OAF protocol [Equations (5.20) and (4.36)], we can see a fundamental

difference between the OAF and NAF protocols. The noise transmission from the

relay only affects the first slot of the frame. In the NAF protocol, this means that

the source’s retransmission during the second slot cannot be corrupted. In the OAF

protocol, this “safe time” is wasted since the source is idle during that slot. We now

provide upper and lower bounds to Equation (5.20) and show that the diversity order

of those bounds are identical. For the lower bound on maximum mutual information,

we recognize that the last term in the logarithm is a a non-negative quantity, and

thus, can be removed. For the upper bound, we notice that the expression is a non-

increasing function of β, and thus, is maximized for β = 0. Hence, we can write these

bounds as

log
(
1 + SNR|hs,d|2

) ≤ max
xs

IWorst 1(xs; yd) ≤ log
(
1 + 2 · SNR|hs,d|2

)
. (5.21)
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Figure 5.6: Worst case outage probability bounds

Figure 5.6 shows the upper and lower bounds on outage probability. Notice that

the upper bound of Equation (5.21) is the maximum mutual information of a direct

SISO link with an SNR gain. This is exactly the maximum mutual information of

the neutral case of the NAF protocol. In Section 5.1.2, we showed that the outage

probability of this system decays with exponential order one. The lower bound of

the expression is the maximum mutual information of a direct SISO link without an

SNR gain. This is exactly the maximum mutual information of the neutral case of

the OAF protocol. In Section 4.1.2, we showed that the outage probability of this

system also decays with exponential order one. Thus,

SNR−1 ≥̇ PO|Worst 1 ≥̇ SNR−1. (5.22)

The bounds are asymptotically tight, and thus,

PO|Worst 1 =̇ SNR−1. (5.23)

Unlike the worst case of the OAF protocol, the first worst case of the NAF protocol
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is guaranteed to not asymptotically degrade performance beyond diversity order one.

5.1.4 Worst Case 2

The final case we consider is the other worst, where the relay actively impedes the

source’s communication by transmitting interference during the first slot of the frame

from a late detection in the previous frame.
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Figure 5.7: Second Worst case states

States B6 and B7 exhibit this behavior. To calculate the outage probability of the

system given this state, we assume all of the same parameters as before and merely

change the expressions to account for the relay’s interference transmission during the

first slot. In the first slot, the destination receives

yd [n] = hs,dxs [n] + zd [n] + hr,dβx̂s

[
n− L

2

]
, (5.24)

where x̂s[n− L
2
] is the previous slot’s, and thus interfering, source’s waveform. During

the second slot, the destination receives only the thermal noise at the destination, or

yd

[
n+

L

2

]
= zd

[
n+

L

2

]
. (5.25)

Transforming this into a 1× 2 multi-antenna system results in the matrix formu-
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lation of

yd[n] = Axs[n] + Bz[n]

 yd[n]

yd[n+ L
2
]

 =

hs,d
hs,d

xs[n] +

hr,dβ 1 0

0 0 1



x̂s[n− L

2
]

zd[n]

zd[n+ L
2
]

 .
(5.26)

We can derive the maximum mutual information between scalar xs and vector yd

in order to determine the maximum instantaneous rate supported by the channel for

given channel gains. For brevity, this derivation is presented in Appendix B.4. From

Equation (B.4), we can express this maximum mutual information as

IWorst Case 2(xs; yd) ≤ 1

2
log

(
1 + SNR|hs,d|2 +

SNR|hs,d|2
SNR|hr,dβ|2 + 1

)
. (5.27)

Despite the slightly different form as compared to the first worst case in Equation

(5.20), the same bounds still apply. Formally,

log
(
1 + SNR|hs,d|2

) ≤ max
xs

IWorst 2(xs; yd) ≤ log
(
1 + 2 · SNR|hs,d|2

)
. (5.28)

In Section 5.1.3, we established that both of these bounds yield outage probabili-

ties that decay with exponential order one. Thus,

PO|Worst 2 =̇ SNR−1. (5.29)
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5.2 Total Performance

Like the analysis in Chapter 4, there are two critical pieces of information: the like-

lihood of states and the performance given each of those states. We use the law of

total probability to combine these two pieces to discuss the total outage probability

of the NAF protocol in a random access environment. Formally,

PO =
1

q

(
PB1·PO|Best + (PB2 + PB3) · PO|Neutral

+ (PB4 + PB5) · PO|Worst 1 + (PB6 + PB7) · PO|Worst 2

)
, (5.30)

where the 1/q term scales the state likelihoods so that
∑

i PBi
= 1. In the following

sections, we will revisit the different energy detection thresholding strategies in order

to discuss this overall system performance.

5.2.1 Static Relay Detection

Equations (3.30) - (3.36) express the exponential orders of the state probabilities for

static relay threshold (i.e. Λ = K). Recall that the best case and worst cases do

not decay in likelihood with SNR, but the neutral cases decay with exponential order

one. Substituting these likelihoods into Equation (5.30) yields

PO|Λ=K =
1

q

(
SNR0·PO|Best + SNR−1 · PO|Neutral

+ SNR0 · PO|Worst 1 + SNR0 · PO|Worst 2

)
. (5.31)

Equations (5.8), (5.16), (5.23), and (5.29) express the exponential orders of the

outage probabilities given the different cases. Substituting these probabilities into



103

the total outage probability expression yields

PO|Λ=K =̇
(
SNR0 · SNR−2 + SNR−1 · SNR−1 + SNR0 · SNR−1 + SNR0 · SNR−1

)
=̇

(
SNR−2 + SNR−2 + SNR−1 + SNR−1

)
PO|Λ=K =̇ SNR−1. (5.32)

With a static energy detection threshold at the relay, full diversity is impossible.

We can verify this behavior via Monte-Carlo simulation.
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Figure 5.8: Outage Probability with Λ = 20

Figure 5.8 shows that the performance with presence of the altruistic relay in the

network performs asymptotically no better than having no relay in all. However, it

certainly performs no worse, which is not necessarily the case for the OAF protocol.

We now turn to dynamic relay thresholds to determine if this problem can be avoided.

5.2.2 Dynamic Relay Detection

Recall from Chapter 3 that we can analyze the performance of the system under

two forms of dynamic thresholding strategies. In the case that the threshold changes
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logarithmically with SNR, we call the strategy a slow dynamic threshold. In the

case that the threshold changes proportionally with SNR, we call the strategy a fast

dynamic threshold. In the following sections, we analyze the effects of both of these

strategies on overall system performance.

5.2.2.1 Slow Dynamic Threshold

Equations (3.66) - (3.72) express the exponential orders of the state probabilities for

the slow dynamic relay threshold (i.e. Λ = K1 + K2 · log (1 + SNR)). Substituting

these likelihoods into Equation (5.30) yields

PO|Λ=K1+K2·log(1+SNR) =
1

q

(
SNR0 · PO|Best + SNR−1 · PO|Neutral

+ SNR−K · PO|Worst 1 + SNR−K · PO|Worst 2

)
. (5.33)

Equations (5.8), (5.16), (5.23), and (5.29) express the exponential orders of the

outage probabilities given the different cases. Substituting these probabilities into

the total outage probability expression yields

PO|Λ=K1+K2·log(1+SNR) =̇
(

SNR0 · SNR−2 + SNR−1 · SNR−1

+ SNR−K · SNR−1 + SNR−K · SNR−1
)
, (5.34)

which becomes

PO|Λ=K1+K2·log(1+SNR) =̇
(
SNR−2 + SNR−2 + SNR−K + SNR−K

)
PO|Λ=K1+K2·log(1+SNR) =̇ SNR−2. (5.35)
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The diversity order is two, which is the full spatial diversity that can be achieved.

We can verify this behavior via Monte-Carlo simulation.
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Figure 5.9: Outage Probability with Λ = 20 + log (1 + SNR)

Figure 5.9 shows that the slow dynamic thresholding strategy achieves full spatial

diversity.

5.2.2.2 Fast Dynamic Threshold

Equations (3.80) - (3.86) express the exponential orders of the state probabilities for

fast dynamic relay threshold (i.e. Λ = K1 +K2 ·SNR). Substituting these likelihoods

into Equation (5.30) yields

PO|Λ=K1+K2·SNR =
1

q

(
SNR0·PO|Best + SNR0 · PO|Neutral

+ SNR−∞ · PO|Worst 1 + SNR−∞ · PO|Worst 2

)
. (5.36)

Equations (5.8), (5.16), (5.23), and (5.29) express the exponential orders of the

outage probabilities given the different cases. Substituting these probabilities into

the total outage probability expression yields



106

PO|Λ=K1+K2·SNR =̇
(

SNR0 · SNR−2 + SNR0 · SNR−1

+ SNR−∞ · SNR−1 + SNR−∞ · SNR−1
)
, (5.37)

which becomes

PO|Λ=K1+K2·SNR =̇
(
SNR−2 + SNR−1 + SNR−∞ + SNR−∞

)
PO|Λ=K1+K2·SNR =̇ SNR−1. (5.38)

Because the fast dynamic threshold makes the neutral case not decay with SNR,

it becomes the dominating term. This yields a diversity order of one. We can verify

this behavior via Monte-Carlo simulation.
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Figure 5.10: Outage Probability with Λ = 20 + SNR

Figure 5.10 shows that, asymptotically, the presence of the altruistic relay does

not aid the source’s ability to communicate when the relay’s energy detection uses a

fast dynamic threshold.
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5.3 Summary

The second main result of this thesis regards the diversity order of the NAF protocol

in a random-access environment. Like in the OAF protocol, in the case of a slow

dynamic energy detection threshold that moves with the logarithm of average SNR,

full diversity can be achieved. In other words, asymptotically, the random-access

cooperative network performs no worse than a scheduled cooperative network.

We have also shown that in both the static threshold case and the fast dynamic

threshold case, the random-access network results in a diversity-order loss relative

to the scheduled network. For the static threshold, the dominating error term arises

from a constant probability of states where the relay actively transmits noise during

a frame. Unlike the OAF protocol, the NAF protocol, at the very least, still performs

asymptotically no worse than having no relay present.

For the fast dynamic threshold, the dominating error term arises from a constant

probability of states where the relay misses the detection of the source’s packet.



Chapter 6

Conclusions

In this thesis, we have shown that the asymptotic gains in outage performance offered

by amplify-and-forward cooperation can be maintained in a random-access environ-

ment, provided the relay’s packet detection system meets certain criteria. When en-

ergy detection is employed as that packet detection system, the threshold on energy

must dynamically shift with average SNR. In particular, a system with a thresholding

scheme that shifts with the logarithm of SNR is able to achieve full diversity.

If this dynamic threshold moves too quickly with SNR (e.g. proportionally with

SNR), missed detections dominate the performance of the system and result in a

diversity-order loss. Likewise, if the threshold fails to move with SNR (i.e. a static

threshold), false alarms dominate the performance of the system and result in a

diversity-order loss.

In a sense, this is distressing. The entire motivation behind amplify-and-forward

cooperation is that the relay would be very easy and inexpensive to design, build,

and deploy. These results reveal that the relay needs to know a priori the average

SNR of the yet-unknown packet in order to adequately help that packet’s source

communicate. While the assumption of this knowledge may be reasonable in the

three-node network studied in this thesis, we acknowledge that such an assumption
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may be unrealistic in multi-user networks where different source nodes have different

average SNRs with respect to the relay. As such, despite the loss of diversity-order,

static energy thresholds are very desirable.

Does a diversity-order loss that comes with using static energy thresholds mean

that that there is no point to deploying cooperative networks? To discuss the answer

of this question, we observe a final Monte Carlo simulation that shows the effects of

different static thresholds on the performance of the NAF protocol.
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(a) Λ = 20
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(b) Λ = 35

Figure 6.1: Outage probability of NAF with different static energy thresholds

The diversity order is, indeed, only one in both figures. However, notice that
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by increasing the static threshold we can somewhat “delay the inevitable” and push

back the diversity-order one behavior to arbitrary SNR values. In fact, notice that

for smaller SNR values, the outage probability appears to decay as if it achieved

full-diversity.

In any actual implementation, SNR is finite and the values that it can take on

depend on the radio being used. Thus, a network designer can still employ a static

energy threshold at the relay if a large enough threshold is chosen. It must be high

enough so that the dominating error terms only begin to reveal themselves past the

SNR values that the system would reasonably operate in. Effectively, this would make

the system perform as if it were achieving full-diversity in the SNR regime of interest.

Thus, even with the asymptotic loss in performance associated with a static energy

detection threshold at the relay, significant gains in reliability can still be realized.

6.1 Extensions and Future Work

In addition to the main results regarding the diversity order of random-access coop-

erative networks, this thesis presents another contribution that is more procedural in

nature. Specifically, we have dealt with the notion of false alarms, where nodes believe

a transmission to be present when, in fact, there is none. We have shown how this

type of error significantly affects the state of a network even when only a small number

of nodes are employed. Future work could apply a similar style of analysis to larger

networks, which are more attractive from the standpoint of eventual implementations

and deployment. Additionally, while we focused on analyzing amplify-and-forward

protocols, a similar style of analysis can be applied to pure decode-and-forward and

hybrid schemes.



Appendix A

Mutual Information Calculations for OAF

A.1 Best Case

In this section, we compute the maximum mutual information of the OAF protocol

under the best case assumption. The analysis of the best case is equivalent to that

from Laneman [8], which in turn is borrowed heavily from Telatar [1]. We begin with

the system model from Equation (4.8):

yd[n] = Axs[n] + Bz[n]

 yd[n]

yd[n+ L
2
]

 =

 hs,d

hr,dβhs,r

xs[n] +

 0 1 0

hr,dβ 0 1




zr[n]

zd[n]

zd[n+ L
2
]

 ,
for n ∈ [0, 1, 2, . . . , L

2

]
. The mutual information of this system satisfies

IBest(xs; yd) ≤ log det
(
I +

(
SNR ·AA†

) (
BE

[
zz†
]
B†
)−1
)
,

with equality for xs being a zero-mean, circularly symmetric, complex Gaussian. For

the best case analysis, the pertinent components of this expression are
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AA† =

 |hs,d|2 h†s,d (hr,dβhs,r)

(hr,dβhs,r)
† hs,d |hr,dβhs,r|2


BE

[
zz†
]
B† =

1 0

0 |hr,dβ|2 + 1

 .
After substitutions and algebraic manipulations, we compute the determinant as

det
(
I+
(
SNR ·AA†

) (
BE

[
zz†
]
B†
)−1
)

= det


1 0

0 1

+

 SNR|hs,d|2 SNRh†s,d (hr,dβhs,r)

SNR (hr,dβhs,r)
† hs,d SNR|hr,dβhs,r|2


1 0

0 1
|hr,dβ|2+1




= 1 +
SNR|hr,dβhs,r|2
|hr,dβ|2 + 1

+ SNR|hs,d|2.

Thus, we can express the maximum mutual information for the best case as

IBest(xs; yd) ≤ log

(
1 +

SNR|hr,dβhs,r|2
|hr,dβ|2 + 1

+ SNR|hs,d|2
)
. (A.1)
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A.2 Neutral Case

In this section, we compute the maximum mutual information of the OAF protocol

under neutral case assumptions. We begin with the system model from Equation

(4.27):

yd[n] = Axs[n] + Bz[n]

 yd[n]

yd[n+ L
2
]

 =

hs,d
0

xs[n] +

0 1 0

0 0 1




zr[n]

zd[n]

zd[n+ L
2
]

 ,
for n ∈ [0, 1, 2, . . . , L

2

]
. The mutual information of this system satisfies

INeutral(xs; yd) ≤ log det
(
I +

(
SNR ·AA†

) (
BE

[
zz†
]
B†
)−1
)
,

with equality for xs being a zero-mean, circularly symmetric, complex Gaussian. For

the neutral case analysis, the pertinent components of this expression are

AA† =

|hs,d|2 0

0 0


BE

[
zz†
]
B† =

1 0

0 1

 .
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After substitutions and algebraic manipulations, we compute the determinant as

det
(
I+
(
SNR ·AA†

) (
BE

[
zz†
]
B†
)−1
)

= det


1 0

0 1

+

SNR|hs,d|2 0

0 0


1 0

0 1




= 1 + SNR|hs,d|2.

Thus, we can express the maximum mutual information for the neutral case as

INeutral(xs; yd) ≤ log
(
1 + SNR|hs,d|2

)
. (A.2)
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A.3 Worst Case

In this section, we compute the maximum mutual information for the OAF protocol

under worst case assumptions. We begin with the system model from Equation (4.35):

yd[n] = Axs[n] + Bz[n]

 yd[n]

yd[n+ L
2
]

 =

hs,d
0

xs[n] +

hr,dβ 1 0

0 0 1



zr[n− L

2
]

zd[n]

zd[n+ L
2
]

 .
for n ∈ [0, 1, 2, . . . , L

2

]
. The mutual information of this system satisfies

IWorst(xs; yd) ≤ log det
(
I +

(
SNR ·AA†

) (
BE

[
zz†
]
B†
)−1
)
,

with equality for xs being a zero-mean, circularly symmetric, complex Gaussian. For

the worst case analysis, the pertinent components of this expression are

AA† =

|hs,d|2 0

0 0


BE

[
zz†
]
B† =

|hr,dβ|2 + 1 0

0 1

 .
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After substitutions and algebraic manipulations, we compute the determinant as

det
(
I+
(
SNR ·AA†

) (
BE

[
zz†
]
B†
)−1
)

= det


1 0

0 1

+

SNR|hs,d|2 0

0 0


 1
|hr,dβ|2+1

0

0 1




= 1 +
SNR|hs,d|2
|hr,dβ|2 + 1

.

Thus, we can express the maximum mutual information for the worst case as

IWorst(xs; yd) ≤ log

(
1 +

SNR|hs,d|2
|hr,dβ|2 + 1

)
. (A.3)
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Mutual Information Calculations for NAF

B.1 Best Case

In this section, we compute the maximum mutual information of the NAF protocol

under the best case assumption. We begin with the system model from Equation

(5.5):

yd[n] = Axs[n] + Bz[n]

 yd[n]

yd[n+ L
2
]

 =

 hs,d

hs,d + hr,dβhs,r

xs[n] +

 0 1 0

hr,dβ 0 1




zr[n]

zd[n]

zd[n+ L
2
]

 ,

for n ∈ [0, 1, 2, . . . , L
2

]
. The mutual information of this system satisfies

IBest(xs; yd) ≤ log det
(
I +

(
SNR ·AA†

) (
BE

[
zz†
]
B†
)−1
)
,

with equality for xs being a zero-mean, circularly symmetric, complex Gaussian. For

the best case analysis, the pertinent components of this expression are
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AA† =

 |hs,d|2 h†s,d (hs,d + hr,dβhs,r)

(hs,d + hr,dβhs,r)
† hs,d |hs,d + hr,dβhs,r|2


BE

[
zz†
]
B† =

1 0

0 |hr,dβ|2 + 1

 .
After substitutions and algebraic manipulations, we compute the determinant as

det
(
I +

(
SNR ·AA†

) (
BE

[
zz†
]
B†
)−1
)

= det


1 0

0 1

+

 SNR|hs,d|2 SNRh†s,d (hs,d + hr,dβhs,r)

SNR (hs,d + hr,dβhs,r)
† hs,d SNR|hs,d + hr,dβhs,r|2


1 0

0 1
|hr,dβ|2+1




=1 +
SNR|hs,d + hr,dβhs,r|2

|hr,dβ|2 + 1
+ SNR|hs,d|2.

Thus, we can express the maximum mutual information for the best case as

IBest(xs; yd) ≤ log

(
1 +

SNR|hs,d + hr,dβhs,r|2
|hr,dβ|2 + 1

+ SNR|hs,d|2
)
. (B.1)
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B.2 Neutral Case

In this section, we compute the maximum mutual information of the NAF protocol

under neutral case assumptions. We begin with the system model from Equation

(5.11):

yd[n] = Axs[n] + Bz[n]

 yd[n]

yd[n+ L
2
]

 =

hs,d
hs,d

xs[n] +

0 1 0

0 0 1




zr[n]

zd[n]

zd[n+ L
2
]

 ,
for n ∈ [0, 1, 2, . . . , L

2

]
. The mutual information of this system satisfies

INeutral(xs; yd) ≤ log det
(
I +

(
SNR ·AA†

) (
BE

[
zz†
]
B†
)−1
)

with equality for xs being a zero-mean, circularly symmetric, complex Gaussian. For

the neutral case analysis, the pertinent components of this expression are

AA† =

|hs,d|2 |hs,d|2
|hs,d|2 |hs,d|2


BE

[
zz†
]
B† =

1 0

0 1

 .
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After substitutions and algebraic manipulations, we compute the determinant as

det
(
I+
(
SNR ·AA†

) (
BE

[
zz†
]
B†
)−1
)

= det


1 0

0 1

+

SNR|hs,d|2 SNR|hs,d|2

SNR|hs,d|2 SNR|hs,d|2


1 0

0 1




= 1 + 2 · SNR|hs,d|2.

Thus, we can express the maximum mutual information for the neutral case as

INeutral(xs; yd) ≤ log
(
1 + 2 · SNR|hs,d|2

)
. (B.2)
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B.3 Worst Case 1

In this section, we compute the maximum mutual information for the NAF protocol

under the first worst case assumption (noise-driven error at relay). We begin with

the system model from Equation (5.19):

yd[n] = Axs[n] + Bz[n]

 yd[n]

yd[n+ L
2
]

 =

hs,d
hs,d

xs[n] +

hr,dβ 1 0

0 0 1




zr[n]

zd[n]

zd[n+ L
2
]

 ,
for n ∈ [0, 1, 2, . . . , L

2

]
. The mutual information of this system satisfies

IWorst Case 1(xs; yd) ≤ log det
(
I +

(
SNR ·AA†

) (
BE

[
zz†
]
B†
)−1
)
,

with equality for xs being a zero-mean, circularly symmetric, complex Gaussian. For

the first worst case analysis, the pertinent components of this expression are

AA† =

|hs,d|2 |hs,d|2
|hs,d|2 |hs,d|2


BE

[
zz†
]
B† =

|hr,dβ|2 + 1 0

0 1

 .
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After substitutions and algebraic manipulations, we compute the determinant as

det
(
I+
(
SNR ·AA†

) (
BE

[
zz†
]
B†
)−1
)

= det


1 0

0 1

+

SNR|hs,d|2 SNR|hs,d|2

SNR|hs,d|2 SNR|hs,d|2


 1
|hr,dβ|2+1

0

0 1




= 1 + SNR|hs,d|2 +
SNR|hs,d|2
|hr,dβ|2 + 1

.

Thus, we can express the maximum mutual information for the first worst case as

IWorst Case 1(xs; yd) ≤ log

(
1 + SNR|hs,d|2 +

SNR|hs,d|2
|hr,dβ|2 + 1

)
. (B.3)
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B.4 Worst Case 2

In this section, we compute the maximum mutual information for the NAF protocol

under the second worst case assumption (interference-driven error at relay). We begin

with the system model from Equation (5.26):

yd[n] = Axs[n] + Bz[n]

 yd[n]

yd[n+ L
2
]

 =

hs,d
hs,d

xs[n] +

hr,dβ 1 0

0 0 1




x̂s[n]

zd[n]

zd[n+ L
2
]

 ,
for n ∈ [0, 1, 2, . . . , L

2

]
. The mutual information of this system satisfies

IWorst Case 2(xs; yd) ≤ log det
(
I +

(
SNR ·AA†

) (
BE

[
zz†
]
B†
)−1
)
,

with equality for xs being a zero-mean, circularly symmetric, complex Gaussian. For

the second worst case analysis, the pertinent components of this expression are

AA† =

|hs,d|2 |hs,d|2
|hs,d|2 |hs,d|2


BE

[
zz†
]
B† =

SNR|hr,dβ|2 + 1 0

0 1

 .
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After substitutions and algebraic manipulations, we compute the determinant as

det
(
I+
(
SNR ·AA†

) (
BE

[
zz†
]
B†
)−1
)

= det


1 0

0 1

+

SNR|hs,d|2 SNR|hs,d|2

SNR|hs,d|2 SNR|hs,d|2


 1

SNR|hr,dβ|2+1
0

0 1




= 1 + SNR|hs,d|2 +
SNR|hs,d|2

SNR|hr,dβ|2 + 1
.

Thus, we can express the maximum mutual information for the second worst case

as

IWorst Case 2(xs; yd) ≤ log

(
1 + SNR|hs,d|2 +

SNR|hs,d|2
SNR|hr,dβ|2 + 1

)
. (B.4)
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Asymptotic CDF Approximations

In this appendix, we collect two important results regarding the asymptotic behavior

of functions of exponential distributions. These results are required for the outage

probability calculations in Chapters 4 and 5.

Fact C.0.1. Let W be an exponential random variable with decay parameter λW . The

following is satisfied:

lim
s→∞

sP [sW < t] = λW t. (C.1)

Claim C.0.2. Let U , V be exponential random variables with decay parameters λU ,

λV . The following is satisfied:

lim
s→∞

sP [f (sU, sV ) < t] = (λU + λV ) t, (C.2)

where f (x, y) = xy
x+y+1

Proof of Claim C.0.2. The proof of this claim follows the same structure as the proof

in Laneman’s original work [8]. The proof presented here contains modifications in

notation as well as simplifying steps. The structure of the proof is to show that a

lower bound on the limit equals an upper bound on the limit. Thus, we can conclude
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that the limit exists and equals the bounds.

The first step of the proof is to find a lower bound on the limit. We first begin

with algebraic manipulations of the probability expression within the limit:

P [f (sU, sV ) < t] = P

[
sUsV

sU + sV + 1
< t

]
= P

[
sU + sV + 1

sUsV
≥ 1

t

]
= P

[
1

sV
+

1

sU
+

1

sV sU
≥ 1

t

]
. (C.3)

Since 1
sV sU

≥ 0, we can lower bound this probability by

P [f (sU, sV ) < t] ≥ P

[
1

sV
+

1

sU
≥ 1

t

]
≥ P

[
max

(
1

sV
,

1

sU

)
≥ 1

t

]
= 1− P [min (sV, sU) ≥ t] . (C.4)

The probability in the above expression is equivalent to the probability of both

sV and sU being greater than or equal to t. Formally,

P [f (sU, sV ) < t] ≥ 1− e−λV
t
s · e−λU

t
s

= 1− e−(λV +λU ) t
s , (C.5)

which we recognize to be of a form similar to a CDF of an exponential distribution.

Consider an exponential random variable W with decay parameter λW = λV + λU .

We can rewrite Equation (C.5) as



127

P [f (sU, sV ) < t] ≥ 1− e−λW
t
s

= P [sW < t] . (C.6)

Replacing the limits back into the expression and using Fact C.0.1 yields

lim
s→∞

sP [f (sU, sV ) < t] ≥ lim
s→∞

sP [sW < t]

= λW t

lim
s→∞

sP [f (sU, sV ) < t] ≥ (λV + λU) t. (C.7)

With Equation (C.7), we have completed the lower bound on the limit. To upper

bound the limit, we return to Equation (C.3), which is repeated here:

P [f (sU, sV ) < t] = P

[
1

sV
+

1

sU
+

1

sV sU
≥ 1

t

]
= P

[
1

sV
≥

1
t
− 1

sU

1 + 1
sU

]
=

∫ ∞
0

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du. (C.8)

Let l > 1 be a fixed constant. We can then split the above integral into two parts,

yielding

P [f (sU, sV ) < t] =

∫ lt
s

0

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du

+

∫ ∞
lt
s

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du.

(C.9)
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We can upper bound the first term in the above expression by making the prob-

ability equal one. Formally,

P [f (sU, sV ) < t] =

∫ lt
s

0

pU (u) du

+

∫ ∞
lt
s

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du. (C.10)

The first integral is, by definition, the CDF of U evaluated at lt
s
, or

P [f (sU, sV ) < t] = P

[
U ≤ lt

s

]
+

∫ ∞
lt
s

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du. (C.11)

We can further bound this expression by recognizing that

P

[
U ≤ lt

s

]
=
sP
[
U ≤ lt

s

]
s

(C.12)

≤ λU lt

s
. (C.13)

Thus, Equation (C.11) can be further upper-bounded by

P [f (sU, sV ) < t] ≤ λU lt

s
+

∫ ∞
lt
s

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du. (C.14)

We now shift our attention to placing an upper bound on the second term of

Equation (C.14). Let k > l be another fixed constant. We can split the integral into

two more parts, yielding
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∫ ∞
lt
s

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du =

∫ kt
s

lt
s

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du

+

∫ ∞
kt
s

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du. (C.15)

Note that the integrands above are non-increasing functions of u. This means that

we can upper bound the second term of Equation (C.15) by removing the integral

and substituting u = kt
s

, yielding

∫ ∞
lt
s

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du ≤

∫ kt
s

lt
s

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du

+ P

[
1

sV
≥

1
t
− 1

kt

1 + 1
kt

]
. (C.16)

This new term can be further upper-bounded by recognizing that

P

[
1

sV
≥

1
t
− 1

kt

1 + 1
kt

]
=
sP
[
sV <

1+ 1
kt

1
t
− 1

kt

]
s

(C.17)

≤
λV

(
1+ 1

kt
1
t
− 1

kt

)
s

. (C.18)

Thus, Equation (C.16) can be rewritten as

∫ ∞
lt
s

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du ≤

∫ kt
s

lt
s

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du

+
λV

(
1+ 1

kt
1
t
− 1

kt

)
s

. (C.19)

Additionally, noting a property of the exponential distribution that pU (u) < λU ,
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we can additionally upper bound and simplify the expression to be

∫ ∞
lt
s

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du ≤ λU

∫ kt
s

lt
s

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
du

+
λV

(
1+ 1

kt
1
t
− 1

kt

)
s

. (C.20)

An analogous bound to Equation (C.20) is

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
=
sP
[
sV <

1+ 1
su

1
t
− 1

stu

]
s

(C.21)

≤
λV

(
1+ 1

su
1
t
− 1

su

)
s

. (C.22)

Substituting Equation (C.22) into Equation (C.20) for the remaining integrand

yields

∫ ∞
lt
s

P

[
1

sV
≥

1
t
− 1

su

1 + 1
su

]
pU (u) du ≤ λU

∫ kt
s

lt
s

λV

(
1+ 1

su
1
t
− 1

su

)
s

du+
λV

(
1+ 1

kt
1
t
− 1

kt

)
s

. (C.23)

The remaining definite integral can be explicitly computed. After simplifications,

this yields

λU

∫ kt
s

lt
s

λV

(
1+ 1

su
1
t
− 1

su

)
s

du

=
1

s
· λUλV [(k − l)t+ (t+ 1) log ((k − 1)t)− (t+ 1) log ((l − 1)t)]

s
. (C.24)

To simplify the the remaining steps of the proof, we define a function as
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F (s)
def
=

λUλV [(k − l)t+ (t+ 1) log ((k − 1)t)− (t+ 1) log ((l − 1)t)]

s
. (C.25)

Finally, we can combine Equations (C.14), (C.19), yielding

P [f (sU, sV ) < t] ≤ λU lt

s
+
λV

(
1+ 1

kt
1
t
− 1

kt

)
s

+
F (s)

s
. (C.26)

Noting that F (s) → 0 as s → ∞, we can reintroduce the limit back into the

expression to yield

lim
s→∞

P [f (sU, sV ) < t] ≤ λU lt+ λV

(
1 + 1

kt
1
t
− 1

kt

)
. (C.27)

Because l and k are arbitrary constants, l can be chosen arbitrarily close to one

and k can be chosen to be arbitrarily large. Thus,

lim
s→∞

sP [f (sU, sV ) < t] ≤ (λU + λV ) t, (C.28)

which completes the upper bound of the limit. Combining Equations (C.7) and (C.28)

yields

(λU + λV ) t ≤ lim
s→∞

sP [f (sU, sV ) < t] ≤ (λU + λV ) t. (C.29)

and thus,

lim
s→∞

sP [f (sU, sV ) < t] = (λU + λV ) t, (C.30)

which completes the proof.
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