
RICE UNIVERSITY

Design, Implementation and Characterization of a

Cooperative Communications System

by

Patrick O. Murphy

A Thesis Submitted
in Partial Fulfillment of the
Requirements for the Degree

Doctor of Philosophy

Approved, Thesis Committee:

Ashutosh Sabharwal, Chair
Associate Professor of Electrical and
Computer Engineering

Behnaam Aazhang
J.S. Abercrombie Professor of Electrical
and Computer Engineering

Edward W. Knightly
Professor of Electrical and Computer
Engineering

David B. Johnson
Professor of Computer Science

Houston, Texas

December 2010

ABSTRACT

Design, Implementation and Characterization of a

Cooperative Communications System

by

Patrick O. Murphy

Cooperative communications is a class of techniques which seek to improve re-

liability and throughput in wireless systems by pooling the resources of distributed

nodes. While cooperation can occur at different network layers and time scales,

physical layer cooperation at symbol time scales offers the largest benefit. However,

symbol level cooperation poses significant implementation challenges, especially in

the context of a network of distributed nodes.

We first present the design and implementation of a complete cooperative physical

layer transceiver, built from scratch on the Wireless Open-Access Research Platform

(WARP). In our implementation fully distributed nodes employ physical layer co-

operation at symbol time scales without requiring a central synchronization source.

Our design supports per-packet selection of non-cooperative or cooperative commu-

nication, with cooperative links utilizing either amplify and forward or decode and

forward relaying. A single design implements transmission, reception and relaying,

allowing each node to assume the role of source, destination or relay per packet.

We also present experimental methodologies for evaluating our design and exten-

sive experimental results of our transceiver’s performance under a variety of topologies

and propagation conditions. Our methods are designed to test both overall perfor-

mance and to isolate and understand the underlying causes of performance bottle-

necks. Our results clearly demonstrate significant performance gains (more than 50×
improvement in PER in some topologies) provided by physical layer cooperation even

when subject to the constraints of a real-time implementation.

As with all our work on WARP, our transceiver design and experimental frame-

work are available via the open-source WARP repository for use by other wireless

researchers.

Contents

Abstract ii

List of Illustrations viii

List of Tables xviii

1 Introduction 1

1.1 Objectives and Challenges . 2

1.2 Summary of Contributions . 3

2 Background 5

2.1 Platform Selection . 5

2.2 Cooperative Schemes . 6

2.3 OFDM . 7

2.4 Distributed Space-Time Block Code 9

2.5 Networking Support . 10

3 Carrier Frequency Offsets 12

3.1 Origin of CFO . 13

3.2 Impact of CFO in OFDM . 15

3.3 Expectations for CFO on WARP . 17

3.4 Measured CFO in Hardware . 18

3.5 Time Domain CFO Correction . 20

3.5.1 Time Domain CFO Estimation Algorithm 21

3.5.2 Performance Expectations . 23

3.5.3 Radio Transients . 24

v

3.5.4 Performance Measurements 34

3.6 Frequency Domain Phase Correction 37

3.7 CFO in a Cooperative System . 41

3.7.1 Temporal Properties of CFO 42

3.7.2 Mitigating CFO in a Cooperative System 46

3.7.3 CFO with Amplify and Forward 48

3.7.4 CFO with Decode and Forward 49

3.7.5 Frequency Domain Residual CFO Estimation 54

3.8 Conclusions . 61

4 Physical Layer Transceiver Design 62

4.1 Key Subsystems . 64

4.1.1 Alamouti Encoding . 65

4.1.2 Packet Buffers . 67

4.1.3 Frame Format . 70

4.1.4 Energy Detector . 73

4.1.5 Receiver State Machine . 74

4.1.6 Packet Timing Correlator . 76

4.1.7 Waveform Buffer . 82

4.2 Auto-Response System . 83

4.2.1 Rx→Tx Turnaround in a Cooperative System 84

4.2.2 Header Match Units . 85

4.2.3 Actions . 86

4.2.4 Header Translation . 88

4.2.5 Timing . 89

4.3 Designing for Characterization . 90

4.3.1 Carrier Frequency Offset . 91

4.3.2 Packet Detection . 91

vi

4.3.3 Random Payload Generation 92

4.3.4 Per-Packet Measurements . 93

5 Experimental Methodologies and Metrics 96

5.1 Node Design . 96

5.2 Channel Emulator . 99

5.2.1 Connections . 99

5.2.2 Channel Models . 101

5.3 Topologies . 103

5.4 Cooperative Schemes . 108

5.5 Methodology . 110

5.5.1 WARPnet Framework . 111

5.5.2 Node Behaviors Across Time Slots 114

5.5.3 Interleaving Modes . 117

5.5.4 Interleaving Trials . 119

5.6 Metrics . 120

5.6.1 Packet Error Rate . 121

5.6.2 Bit Error Rate . 122

6 Experiments with Full Cooperative Transceiver 124

6.1 Experimental Parameters . 125

6.2 Co-located Source/Relay Topology 127

6.2.1 PER/BER with 1412 Byte Payloads 128

6.2.2 PER/BER with 692 Byte Payloads 131

6.2.3 Observations . 133

6.3 Equidistant Nodes Topology . 135

6.3.1 PER/BER with 1412 Byte Payloads 136

6.3.2 PER/BER with 692 Byte Payloads 138

6.3.3 Observations . 141

vii

6.4 Linear Topologies . 142

6.4.1 PER/BER with 10.4 m SD Separation 142

6.4.2 PER/BER with 18 m SD Separation 146

6.4.3 Observations . 149

6.5 Analysis of Performance Bottlenecks 151

6.5.1 CFO Pre-Correction Errors 151

6.5.2 Dynamic Range of Channel Frequency Response 154

6.5.3 Bit Error Densities . 161

7 Future Work 166

7.1 Physical Layer Cooperation in a Network 166

7.1.1 Early MAC Results . 166

7.1.2 Rate Adaptation . 168

7.1.3 Open Questions . 170

7.2 Transceiver Extensions . 171

7.2.1 Temporal Combining . 171

7.2.2 Error Correcting Codes . 172

7.2.3 Full Duplex . 173

A Additional Plots for Full Transceiver Characterization 176

A.1 Co-located Source/Relay Topology 177

A.1.1 1412 Byte Payloads . 177

A.1.2 692 Byte Payloads . 181

A.2 Equidistant Nodes Topology . 185

A.2.1 1412 Byte Payloads . 185

A.2.2 692 Byte Payloads . 189

A.3 Linear Topologies . 193

A.3.1 10.4 m SD Separation . 193

A.3.2 18 m SD Separation . 198

Illustrations

3.1 Simplified models of a direct conversion RF transmitter and receiver. 13

3.2 Simulation of SISO OFDM performance loss due to CFO-induced

inter-carrier interference (ICI). 16

3.3 Hardware connections for measuring CFO between two WARP nodes. 18

3.4 Typical distributions of carrier frequency offsets between two pairs of

WARP nodes. 19

3.5 Block diagram of time domain CFO estimator implementation. 22

3.6 Phase differences whose mean is used as the CFO estimate, showing

the distortion which skews the CFO estimate. 25

3.7 Time domain CFO estimate as a function of offset from the beginning

of a received packet. 26

3.8 Transients in instantaneous frequency offset immediately after

enabling the radio transmit path, as calculated by the VSA. 29

3.9 Same data as Figure 3.8, zoomed in on first 50 µsec after the

transmitter is enabled. 30

3.10 Measuring the instantaneous voltage on the WARP Radio Board. . . 31

3.11 Oscilloscope measurement of the instantaneous transmitter state (top

trace) and supply voltage (bottom trace) on the WARP Radio Board

during the start of a transmission. 32

3.12 Hardware configuration for characterizing performance of the time

domain CFO estimation implementation. 34

ix

3.13 Distribution of time domain CFO estimates for fixed CFO at high

SNR, as measured in hardware. 36

3.14 Estimation error (2σ) for the time domain CFO estimator for

multiple CFOs and SNRs, as measured in hardware. 37

3.15 BER vs. CFO, for small CFOs and multiple attenuations. 38

3.16 Subcarrier mapping of pilot tones, interleaved in time and across

antennas. 41

3.17 Simple two slot cooperative exchange, indicating each inter-node

CFO from the perspective of the receiving nodes. 42

3.18 Measurements of actual CFO between two WARP nodes, captured at

2.1 ms intervals for 40 minutes. Plots (b)-(d) each show a subset of

data from plot (a) over smaller time intervals. 44

3.19 Distribution of CFO drift, from the same experiment as Figure 3.4(b). 45

3.20 Signals for the path through the relay in an amplify and forward link. 48

3.21 Hardware configuration for characterizing the destination’s tolerance

for CFO between source and relay transmissions. 51

3.22 Experimental PER/BER performance vs. CFO between transmitting

nodes. 52

3.23 Experimental PER/BER performance vs. CFO between transmitting

nodes, where one transmitting node applies CFO pre-correction based

on its time domain CFO estimate. 53

3.24 Inferring CFO from phase error estimates calculated per OFDM symbol. 55

3.25 Performance of various frequency domain CFO estimation schemes

vs. SNR for various packet durations (durations are measured in

OFDM symbols). 57

3.26 Experimental distribution of frequency domain residual CFO estimates. 58

3.27 Experimental performance of the frequency domain residual CFO

estimator vs. SNR for multiple packet durations. 59

x

3.28 Experimental performance of the frequency domain residual CFO

estimator vs. packet duration for multiple SNRs. 60

4.1 Example System Generator block digram, showing the CRC-32

calculation subsystem from our OFDM transmitter. 63

4.2 Block diagram of the OFDM transmit and receive signal processing

pipelines. 64

4.3 Addressing of OFDM transmitter time domain sample buffers

implementing frequency domain conjugation for Alamouti encoding. . 67

4.4 Schematic of the OFDM transceiver packet buffer subsystem. 69

4.5 Field descriptions and durations for OFDM frames. 70

4.6 Mapping of data symbols and pilot tones across subcarriers. 72

4.7 OFDM receiver flow chart . 74

4.8 Auto-correlation of the preamble’s long training symbol (LTS). 76

4.9 Packet timing correlator output for full preamble, comparing full

precision calculation (a) to 1-bit×1-bit quantized version (b). 78

4.10 Frame format for cooperative transmissions, where two nodes each

transmit one of the streams simultaneously. 79

4.11 Output of full precision (a) and 1-bit×1-bit (b) correlators when

processing overlapping preambles for 2×1 or cooperative transmission. 80

4.12 Output of 3-bit×1-bit correlator for a single transmission (a) and two

transmissions (b). 81

4.13 Experimental results for probability of error during packet timing

estimation for non-cooperative (NC) and amplify-and-forward (AF)

links, using the original 1-bit×1-bit (a) and new 1-bit×3-bit (b)

correlators. 81

4.14 Block diagram of OFDM receiver’s auto-responder subsystem. 85

4.15 Block diagram of OFDM transmitter’s header translation subsystem. 88

xi

4.16 Relative start times of two automatic transmissions from cooperating

nodes, triggered by independent receptions of the same packet. 90

4.17 Example observation of MAC and PHY behaviors, captured by

observing state signals from multiple nodes in real-time on an

oscilloscope. 94

5.1 Block diagram of the overall FPGA design for our implementation on

WARP, consisting of C code for the FPGA’s PowerPC (1), custom

logic designs in the FPGA fabric (2) and key peripherals on the

WARP hardware itself (3). 97

5.2 Connections between WARP nodes and the Azimuth channel

emulator for cooperative experiments. 101

5.3 Hardware setup for our experiments, with three WARP nodes and

the Azimuth channel emulator. 101

5.4 Power delay profiles for TGn channel models B, C and D 102

5.5 Co-located source/relay topology, modeling a source and relay at a

small, fixed distance cooperating to communicate with a distant

destination. 105

5.6 Equidistant nodes topology, with source, relay and destination each

separated by a common distance . 105

5.7 Linear topology for experiments modeling fixed source and

destination, with the relay at various points along the line connecting

them. 106

5.8 Errors between desired and actual distances in the linear topology

using only attenuators (1.0 dB step) and attenuators plus model

gains (0.1 dB step). 108

5.9 Timing of Tx/Rx modes for cooperative experiments. 116

xii

5.10 State transitions in the OFDM receiver for a given transmission,

indicating which end states are counted as packet errors. 122

6.1 Structure of each experiment, with four nested loops sweeping over

multiple iterations of every combination of experimental parameters. . 125

6.2 Co-located source/relay topology. 127

6.3 Packet error rates for co-located source/relay topology with 1416

byte, QPSK modulated payloads. 128

6.4 Packet error rates for co-located source/relay topology with 1416

byte, 16-QAM modulated payloads. 129

6.5 Bit error rates for co-located source/relay topology with 1416 byte,

QPSK modulated payloads. 129

6.6 Bit error rates for co-located source/relay topology with 1416 byte,

16-QAM modulated payloads. 130

6.7 Packet error rates for co-located source/relay topology with 692 byte,

QPSK modulated payloads. 131

6.8 Packet error rates for co-located source/relay topology with 692 byte,

16-QAM modulated payloads. 132

6.9 Bit error rates for co-located source/relay topology with 692 byte,

QPSK modulated payloads. 132

6.10 Bit error rates for co-located source/relay topology with 692 byte,

16-QAM modulated payloads. 133

6.11 Equidistant nodes topology. 135

6.12 Packet error rates for equidistant nodes topology with 1412 byte,

QPSK modulated payloads. 136

6.13 Packet error rates for equidistant nodes topology with 1412 byte,

16-QAM modulated payloads. 137

xiii

6.14 Bit error rates for equidistant nodes topology with 1412 byte, QPSK

modulated payloads. 137

6.15 Bit error rates for equidistant nodes topology with 1412 byte,

16-QAM modulated payloads. 138

6.16 Packet error rates for equidistant nodes topology with 692 byte,

QPSK modulated payloads. 139

6.17 Packet error rates for equidistant topology nodes with 692 byte,

16-QAM modulated payloads. 139

6.18 Bit error rates for equidistant topology nodes with 692 byte, QPSK

modulated payloads. 140

6.19 Bit error rates for equidistant topology nodes with 692 byte, 16-QAM

modulated payloads. 140

6.20 Linear topologies with 10.4 m source/destination separation. 143

6.21 Packet error rates for linear topology QPSK modulated payloads and

10.4 m SD separation. 144

6.22 Packet error rates for linear topology 16-QAM modulated payloads

and 10.4 m SD separation. 144

6.23 Bit error rates for linear topology QPSK modulated payloads and

10.4 m SD separation. 145

6.24 Bit error rates for linear topology 16-QAM modulated payloads and

10.4 m SD separation. 145

6.25 Linear topologies with 18 m source/destination separation. 146

6.26 Packet error rates for linear topology QPSK modulated payloads and

18 m SD separation. 147

6.27 Packet error rates for linear topology 16-QAM modulated payloads

and 18 m SD separation. 148

6.28 Bit error rates for linear topology QPSK modulated payloads and

18 m SD separation. 148

xiv

6.29 Bit error rates for linear topology 16-QAM modulated payloads and

18 m SD separation. 149

6.30 Probability distribution of frequency domain CFO estimation error

vs. Rx power, for full-length packets in a flat fading channel. 153

6.31 Packet success and error rates for NC/DF/AF as a function of

channel frequency response dynamic range, for full length 16-QAM

payloads in the co-located source/relay topology 157

6.32 Block diagram of the signal chain from the antenna to OFDM

receiver. The RF receiver in the MAX2829 applies gain in two stages,

with gains selected by the OFDM receiver’s AGC block. 158

6.33 Channel estimates for high-dynamic range channel response. 160

6.34 Packet error rate (a) broken down into contributing errors (b)-(d) for

full length 16-QAM payloads in the co-located source/relay topology. 162

6.35 Distribution (a) and cumulative distributions of number of bit errors

per packet for co-located source/destination/relay topology and full

length payloads modulated at 16-QAM. 164

6.36 Pseudo packet error rates for co-located source/relay topology with

1416 byte, QPSK modulated payloads, for four different bit error

thresholds. 165

7.1 Throughput improvement using DOC in a three node network, tested

with a fixed source/destination and a relay at various points along

the line connecting them. 167

7.2 Packet error rates for NC and DF schemes in co-located source/relay

topology with 692 byte payloads modulated with QPSK and 16-QAM. 169

A.1 Probability of destination receiving packets with good headers but

bad payloads for QPSK modulation. 177

xv

A.2 Probability of destination receiving packets with good headers but

bad payloads for 16-QAM modulation. 177

A.3 Probability of destination receiving packets with bad headers for

QPSK modulation. 178

A.4 Probability of destination receiving packets with bad headers for

16-QAM modulation. 178

A.5 Probability of missed detection (no energy detection or preamble

correlation) at the destination for QPSK payloads. 179

A.6 Probability of missed detection (no energy detection or preamble

correlation) at the destination for 16-QAM payloads. 179

A.7 Probability of relay transmitting for QPSK payloads. 180

A.8 Probability of relay transmitting for 16-QAM payloads. 180

A.9 Probability of destination receiving packets with good headers but

bad payloads for QPSK modulation. 181

A.10 Probability of destination receiving packets with good headers but

bad payloads for 16-QAM modulation. 181

A.11 Probability of destination receiving packets with bad headers for

QPSK modulation. 182

A.12 Probability of destination receiving packets with bad headers for

16-QAM modulation. 182

A.13 Probability of missed detection (no energy detection or preamble

correlation) at the destination for QPSK payloads. 183

A.14 Probability of missed detection (no energy detection or preamble

correlation) at the destination for 16-QAM payloads. 183

A.15 Probability of relay transmitting for QPSK payloads. 184

A.16 Probability of relay transmitting for 16-QAM payloads. 184

A.17 Probability of destination receiving packets with good headers but

bad payloads for QPSK modulation. 185

xvi

A.18 Probability of destination receiving packets with good headers but

bad payloads for 16-QAM modulation. 185

A.19 Probability of destination receiving packets with bad headers for

QPSK modulation. 186

A.20 Probability of destination receiving packets with bad headers for

16-QAM modulation. 186

A.21 Probability of missed detection (no energy detection or preamble

correlation) at the destination for QPSK payloads. 187

A.22 Probability of missed detection (no energy detection or preamble

correlation) at the destination for 16-QAM payloads. 187

A.23 Probability of relay transmitting for QPSK payloads. 188

A.24 Probability of relay transmitting for 16-QAM payloads. 188

A.25 Probability of destination receiving packets with good headers but

bad payloads for QPSK modulation. 189

A.26 Probability of destination receiving packets with good headers but

bad payloads for 16-QAM modulation. 189

A.27 Probability of destination receiving packets with bad headers for

QPSK modulation. 190

A.28 Probability of destination receiving packets with bad headers for

16-QAM modulation. 190

A.29 Probability of missed detection (no energy detection or preamble

correlation) at the destination for QPSK payloads. 191

A.30 Probability of missed detection (no energy detection or preamble

correlation) at the destination for 16-QAM payloads. 191

A.31 Probability of relay transmitting for QPSK payloads. 192

A.32 Probability of relay transmitting for 16-QAM payloads. 192

A.33 Probability of destination receiving packets with good headers but

bad payloads for QPSK modulation. 193

xvii

A.34 Probability of destination receiving packets with good headers but

bad payloads for 16-QAM modulation. 194

A.35 Probability of destination receiving packets with bad headers for

QPSK modulation. 194

A.36 Probability of destination receiving packets with bad headers for

16-QAM modulation. 195

A.37 Probability of missed detection (no energy detection or preamble

correlation) at the destination for QPSK payloads. 195

A.38 Probability of missed detection (no energy detection or preamble

correlation) at the destination for 16-QAM payloads. 196

A.39 Probability of relay transmitting for QPSK payloads. 196

A.40 Probability of relay transmitting for 16-QAM payloads. 197

A.41 Probability of destination receiving packets with good headers but

bad payloads for QPSK modulation. 198

A.42 Probability of destination receiving packets with good headers but

bad payloads for 16-QAM modulation. 198

A.43 Probability of destination receiving packets with bad headers for

QPSK modulation. 199

A.44 Probability of destination receiving packets with bad headers for

16-QAM modulation. 199

A.45 Probability of missed detection (no energy detection or preamble

correlation) at the destination for QPSK payloads. 200

A.46 Probability of missed detection (no energy detection or preamble

correlation) at the destination for 16-QAM payloads. 200

A.47 Probability of relay transmitting for QPSK payloads. 201

A.48 Probability of relay transmitting for 16-QAM payloads. 201

Tables

4.1 Alamouti STBC encoding . 65

5.1 FPGA resource usage . 98

5.2 TGn channel model parameters . 102

5.3 Payload and timing parameters for cooperative experiments. 117

5.4 Relay auto-responder action configurations for cooperative tests . . . 118

6.1 Attenuations configured in the channel emulator for each relay

position in the 10.4 m SD separation linear topology. 143

6.2 Attenuations configured in the channel emulator for each relay

position in the 18 m SD separation linear topology. 147

1

Chapter 1

Introduction

Cooperative communications is the general idea of pooling the resources of distributed

nodes to improve the overall performance of a wireless network. Applications of

this general idea have been widely studied in the literature, with some of the most

prominent [1–4] having already garnered many thousands of citations. The survey

in [5] provides an excellent overview of the field from a theory-centric perspective.

While cooperative communications has a rich theoretical history in the literature,

efforts to actually implement cooperative systems have been much more limited. A

number of papers have been published in recent years describing cooperative imple-

mentations [6–9]. Each one, however, falls short of realizing the complete, real-time

transceiver we seek to build.

For example, in our own previous work [9], we built a real-time cooperative system

utilizing a dedicated relay. While this system achieved significant performance gains,

it required a wired connection between the source and relay to synchronize their

simultaneous transmissions. It also supported only amplify and forward relaying,

as it lacked the receiver features necessary to address the carrier frequency offset

challenges imposed by decode and forward relaying.

Two implementations are presented in [10]. In the first, the authors focus on coop-

eration at the MAC layer. This approach is constrained by using standards compliant

wireless interfaces whose physical and link layer behaviors cannot be modified in any

substantial way. The second implementation uses a software defined radio platform

2

which allows custom physical layer designs. Unfortunately the software implementa-

tion of the physical layer does not operate in real-time, significantly constraining the

achievable data rates and channel conditions which can be evaluated.

In [7] the authors present the performance of a decode and forward system built

using GNU Radio. They demonstrate clear a BER improvement using DF, but their

transceiver design allows only a single transmission per time slot. The authors state

that while simultaneous source and relay transmissions would improve performance,

“...distributed synchronization is a large implementation hurdle to overcome.” They

continue, saying “this is a particular area of cooperative diversity research in which

implementation work can prove particularly fruitful.” We agree, and seek to address

precisely these challenges in our design.

1.1 Objectives and Challenges

Our work seeks to achieve three primary objectives:

1. Design and implementation of a real-time cooperative physical layer transceiver;

2. Development of experimental methodologies to accurately test the transceiver;

3. Rigorous characterization and analysis of the transceiver’s performance.

Each of these objectives presents significant challenges which must be overcome

in our work. A few challenges, discussed below, are apparent even before starting the

transceiver design. Others are more subtle and are discussed in context throughout

the chapters that follow.

• Carrier Frequency Offset: Correcting for differences in carrier frequencies

between a transmitter and receiver is a challenge in most wireless systems; it is

3

especially challenging when two independent nodes (source and relay) transmit

simultaneously to a common destination.

• Synchronization: The timing of transmissions from cooperating nodes must

be aligned; any offset can degrade performance, and large offsets can cripple

communication altogether.

• Full Node Integration: Every physical layer subsystem, from core signal

processing blocks to front-end systems for energy detection and synchronization,

must interoperate and be integrated into a single, real-time design.

• Experiment Design: The hardware configuration, independent variables,

metrics and methodologies for our experiments must be designed to gather

results we can be certain reflect the true performance of our implementation.

We have addressed all of these challenges in our work, as detailed in the following

chapters.

1.2 Summary of Contributions

Our contributions can be broadly divided into three groups.

First is the design and FPGA implementation of a full, real-time cooperative

OFDM transceiver. To the best of our knowledge, this transceiver is the only open-

source implementation of a complete MIMO OFDM physical layer, and certainly

the only one to support physical layer cooperation. Our OFDM design is one of the

key deliverables of the overall Rice Wireless Open-Access Research Platform (WARP)

effort and has already had significant impact among the hundreds of researchers using

WARP worldwide [11].

4

Our transceiver design addresses all of the challenges associated with building a

real-time OFDM system in an FPGA. It also addresses additional challenges unique

to physical layer cooperation. These challenges and our solutions to each are are

detailed in Chapters 3 and 4.

Our second key contribution is the development of methodologies for evaluating

the performance of our cooperative system. Our methods are designed to accurately

measure performance over the course of long experiments which sweep topological and

propagation conditions. We also develop techniques to identify performance limita-

tions and to isolate and understand their underlying causes. While our experimental

framework was designed for our own research, the tools are useful for many other

types of experiments. In fact, a number of other WARP users have already adopted

our methodologies for use in their own experiments. Our experimental methodologies

are discussed in Chapter 5.

Our final primary contribution is an extensive set of experimental results detailing

the performance of our cooperative design. Our experiments test a variety of node

topologies and propagation conditions, each designed to model realistic scenarios

for modern wireless networking devices. Our results clearly demonstrate substantial

performance gains when using cooperation. These results and related discussions are

presented in Chapter 6.

5

Chapter 2

Background

We can state our primary goal quite simply: we aim to build and characterize a

complete cooperative communications transceiver. However, the distillation of this

general goal into an actual implementation requires we make some early, fundamental

design decisions.

2.1 Platform Selection

We use the Rice Wireless Open-Access Research Platform (WARP) [12] for our co-

operative transceiver implementation and characterization.

The WARP hardware combines a large FPGA, flexible RF interfaces and various

support peripherals. The FPGA is a “blank-slate,” providing subtantial computa-

tional resources for the implementation of fully custom transceivers. The RF inter-

faces provide waveform-level access to a radio transceiver; these interfaces impose

no wireless standard and require all waveform generation and processing be handled

by custom designs in the FPGA. We implement the full physical layer transceiver

entirely in the FPGA. The design operates in real-time, transmitting and receiving

wideband waveforms without any off-chip processing.

Other programmable wireless platforms have been developed in recent years, but

none meets the requirements of our work. For example, the combination of GNU

Radio [13] and the Ettus USRP hardware [14] enables flexible wireless designs. Their

6

approach focuses on using PC-based software for the majority of signal processing,

with the hardware performing RF up/downconversion, rate change filtering and ex-

change of samples with a PC. This approach enables rapid iteration on transceiver

algorithms, as they are implemented entirely in software. However the latency in

moving samples between the RF front-end and PC is long, on the order of many

milliseconds [15].

As discussed in Chapter 1 we seek to build a cooperative system which operates

at data rates and time scales comparable to modern wireless networking standards.

Operation at these time scales requires nodes switch between receiving and trans-

mitting with turnaround times of tens of microseconds (the SIFS interval between

DATA and ACK packets in IEEE 802.11a is 19 µs, for example). Meeting these tim-

ing constraints requires moving the physical layer processing closer to the antenna.

On WARP, this means implementing the full transceiver in the FPGA with direct

connections to the radio’s ADCs and DACs.

In short, WARP uniquely enables our implementation of a complete, real-time,

cooperative transceiver.

2.2 Cooperative Schemes

A huge variety of cooperative schemes have been proposed; [5] provides a good

overview. Most schemes can be characterized along two dimensions: whether cooper-

ating nodes transmit simultaneously and by the amount of physical layer processing

performed at relay nodes.

We focus on two schemes: amplify and forward (AF) and decode and for-

ward (DF). The key difference between AF and DF is the amount of processing at

the relay. In AF the relay simply captures the waveform received from the source,

7

amplifies it, then re-transmits it coincident with a second transmission by the source.

In DF the relay implements a full physical layer transceiver. It decodes a transmis-

sion by the source, buffers the actual payload bytes, then re-transits the payload

using its own transmitter. Each scheme presents unique implementation challenges,

as discussed in Chapter 4.

We use versions of both schemes where cooperating nodes transmit simultaneously.

Our approach is analogous to “virtual MIMO,” where distributed single-antenna

nodes transmit together, seeking to create a waveform indistinguishable from that

of a single multi-antenna transmitter. Our motivation for this approach is to en-

able a receiver which can seamlessly process SISO, cooperative and multi-antenna

transmissions without a-priori knowledge of the transmitter configuration.

Finally, we focus on schemes which employ a single relay (to facilitate use of the

Alamouti space-time block code, discussed below).

2.3 OFDM

We use orthogonal frequency division multiplexing (OFDM) as the underlying mod-

ulation technique for our physical layer design. This choice is motivated by the same

reasons that led many of the latest wireless networking and cellular standards to

adopt OFDM for their physical layer specifications. Our primary motivations for

using OFDM are discussed below.

Moderate Complexity: With OFDM, a wideband spectrum is divided into

many narrow subcarriers, each of which is processed independently. The frequency

division is performed with fast Fourier transforms (IFFT for Tx, FFT for Rx), which

are well suited for FPGA implementation. With careful selection of subcarrier spacing

and overall bandwidth, the channel frequency response for each subcarrier can be

8

modeled with a single complex value. This allows a much easier implementation than

that required for processing multi-tap time domain channel responses. Our design

uses 10 MHz bandwidth divided into 64 subcarriers.

Delay Spread Tolerance: A transmitted OFDM waveform is of a sequence of

“OFDM symbols.” Each symbol is the sequence of samples output from the trans-

mitter’s inverse FFT, consisting of one sample per subcarrier. Guard intervals are

inserted between each transmitted OFDM symbol to provide tolerance for multipath

fading. Longer guard intervals provide more multipath tolerance, but incur higher

overhead. OFDM systems typically fill the guard intervals with a cyclic prefix, a rep-

etition of the final samples of the following OFDM symbol. This technique provides

tolerance for synchronization errors at the receiver. Our design uses a 16 sample

(1.6 µsec) cyclic prefix per OFDM symbol.

Cooperative Timing Tolerance: The delay spread and synchronization toler-

ance provided by the cyclic prefix also serves to ease reception of cooperative trans-

missions [16]. Consider a cooperative transmission by two nodes (source and relay).

The arrival of their simultaneous transmissions at a common destination may not

occur at the same instant. Fortunately, any offset in the arrival times mimics the

effects of multipath. Thus, if the combination of difference in arrival times and chan-

nel delay spread is shorter than the cyclic prefix, an OFDM receiver will suffer no

extra degradation. It is still critical the two transmissions be as well synchronized as

possible to preserve the maximum tolerance for actual multipath fading. Our solution

to this synchronization challenge is discussed in Chapter 4

9

2.4 Distributed Space-Time Block Code

Our focus on cooperative schemes which employ simultaneous transmissions by coop-

erating nodes poses a challenge. By definition, our cooperating nodes will transmit

the same payload to a common destination. However if these simultaneous trans-

missions use identical waveforms they could combine destructively at the destination.

This issue is analogous to unintentional beamforming. Two transmissions of the same

waveform would form spatial beam patterns. If the destination node were located in

a null of these patterns it could receive a weaker signal than if only one transmitter

were active. In other words, simply transmitting identical waveforms from cooperat-

ing nodes could actually hurt performance.

A frequently proposed solution to this issue is an adaptation of space-time cod-

ing [4, 16, 17]. Space-time codes provide techniques for designing waveforms for

transmission from multiple antennas with the goal of improving reliability relative to

that of a single-antenna transmission. Some space-time codes can be readily adapted

for use by cooperating nodes, which each node acting as if it were one antenna in a

multi-antenna transmitter.

We selected the Alamouti space-time block code [18] for our design. The Alamouti

code specifies an encoding process which translates a sequence of modulated data

symbols into two waveforms suitable for simultaneous transmission. The code also

specifies a simple decoding process which translates the single received waveform

(composed of the weighted sum of the transmitted waveforms, with weights corre-

sponding to channel coefficients) back into the original sequence of data symbols.

The Alamouti encoding and decoding processes are relatively simple and lend

themselves to straightforward implementation in an FPGA. Applying these processes

in an OFDM transceiver requires some extra care, but it remains feasible to implement

10

a system which exploits all the benefits of both OFDM and the Alamouti STBC.

One of the key benefits of the Alamouti code is that it provides full diversity. In a

two-antenna transmitter this means every payload symbol is transmitted from both

antennas. In the context of a cooperative link, this feature implies that either the

source or relay’s transmission is sufficient for the destination to decode a complete

payload.

The Alamouti code was conceived for use with a two-antenna transmitter. How-

ever, it is straightforward to use the code with a pair of single-antenna cooperative

nodes. The key requirement is that the nodes assume the roles of opposite antennas,

so that each node transmits a different (but complementary) waveform. Our imple-

mentation uses a single relay per cooperative transmission, so it is straightforward to

assign one stream to the source and the other to the relay.

2.5 Networking Support

One of our research group’s overall projects is investigating the benefits and costs of

physical layer cooperation in real wireless networks. Our contribution to this effort is

the design and characterization of the cooperative transceiver described in this thesis.

While our work here does not include development at higher layers or network-scale

experiments, it is critical our transceiver design support these efforts in the future.

Thus, a major requirement for our physical layer design is that it enable development

and evaluation of novel protocols at the MAC layer.

Medium access protocols can be broadly classified as either scheduled or random

access. From a PHY perspective random access is the more demanding, requiring

the transceiver be ready to receive a packet from any node at any time. Further, it

requires that when a packet is received the PHY must establish all necessary syn-

11

chronization using just the incoming waveform. Our transceiver is designed to meet

both requirements, with key front-end subsystems (energy detection, AGC, symbol

synchronization, CFO estimation, etc.) which require no external synchronization

and enable reception of packets over a wide range of received powers.

A second requirement for supporting MAC protocol development is that, in ad-

dition to the cooperative schemes discussed above, the PHY must also support non-

cooperative communication. Further, the PHY should be able to assume the role of

source, relay or destination per-packet. Together these features enable exploration of

a wide variety of MAC protocols and will facilitate real-time experiments at the data

rates and time scales of modern wireless networking devices.

While the primary focus of this thesis is the physical layer, our transceiver has

already been used in early investigations of a cooperation-aware MAC protocol. This

work is briefly discussed in Chapter 7.

12

Chapter 3

Carrier Frequency Offsets

Carrier frequency offset is a common impairment in real wireless systems. It results

from variations in frequency across the local oscillators employed by communicating

nodes to generate the carrier signals they use for translating signals between baseband

and RF. The issues of CFO are well understood problems in wireless systems. How-

ever, the impact of CFO and techniques to mitigate it depend heavily on the specific

parameters of a given transceiver and the properties of the hardware on which it is

realized.

In the sections below we discuss the origins of CFO and expectations for offsets

when using the WARP hardware. We also explore CFO issues specific to OFDM and

how these impact our transceiver design. Through both simulations and experiments,

we demonstrate the performance of the CFO estimation and correction scheme we

designed for our transceiver.

Additional issues related to CFO arise in the context of a cooperative communi-

cations system. Specifically, when two nodes transmit simultaneously, the physical

layer design must consider both the offset between the transmitters and each trans-

mitter’s offset relative to their common destination. In Section 3.7 below we discuss

this multi-CFO issue in detail and present our design and experimental evaluation of

a scheme to manage it.

13

3.1 Origin of CFO

The basis for carrier frequency offsets can be understood by examining a simple model

for the inner workings of a radio transmitter and receiver. These are illustrated in

Figure 3.1.

Re(XBB) X

X

Re()

Im()
etjω +

XRF

Im(XBB)

(a) Transmitter model

XRF

X

X

Re()

Im()
etjω

LPF()

LPF()

Re(XBB)

Im(XBB)

(b) Receiver model

Figure 3.1 : Simplified models of a direct conversion RF transmitter and receiver.

The carrier frequency is denoted as ω, XBB is a complex baseband signal, XRF is

a real-valued RF signal and LPF(x) a low-pass filter with gain 2 and a passband de-

termined by the bandwidth of the baseband signal. These models omit a significant

number of other operations performed by real RF transceivers (filters, DC cancel-

lation, transmit and receive gain control, etc.). However, none of these affect the

up/downconversion processes as they relate to CFO.

14

The transmit and receive processes can be written as follows:

XRF = Tx(XBB, ω)

= Re(XBB) cos(tω)− Im(XBB) sin(tω)

=
1

2
(XBBe

jtω +X∗
BBe

−jtω)

XBB = Rx(XRF , ω)

= LPF(XRF e
jtω).

(3.1)

In order to understand the basis of CFO, consider a simple transmission of a signal

SBB from a source node with carrier frequency ωS which is received by a destination

with carrier frequency ωD:

SBB → Tx(SBB, ωS)→ SRF → Rx(SRF , ωD)→ DBB.

Ideally, the destination would recover the transmitted baseband signal exactly.

Using the expressions for Tx() and Rx() in Equation 3.1, we can express the received

baseband signal DBB in terms of the transmitted baseband signal SBB and the carrier

frequencies:

DBB = LPF

(
(SBBe

jtωS + S∗
BBe

−jtωS)(ejtωD)

2

)

= SBB(ejt(ωS−ωD)).

(3.2)

The received baseband signal is equal to the original baseband signal modulated

by a complex sinusoid. In the frequency domain, this gives a received spectrum equal

15

to the transmitted one, only shifted away from DC by the difference in the carrier

frequencies of the transmitter and receiver (i.e. ωS − ωD). This shift of the received

signal is the baseband manifestation of carrier frequency offset.

3.2 Impact of CFO in OFDM

In an OFDM system, the performance degradation due to uncorrected carrier fre-

quency offsets can be substantial [19, 20]. The performance of an OFDM system is

impacted by CFO in two primary ways. First, the frequency offset manifests as a

phase offset which is constant across subcarriers in an OFDM symbol and increases

with each OFDM symbol. These phase offsets must be estimated and corrected in

the frequency domain to avoid symbol errors due to rotated constellation symbols.

Most OFDM systems allocate a small number of subcarriers for use as pilot tones

from which the receiver can extract phase error estimates for each OFDM symbol.

Our use of pilot tones is discussed in Section 3.6 below.

The second impact of CFO is the loss of orthogonality between subcarriers in the

OFDM receiver’s FFT. The result is inter-carrier interference (ICI), which acts as an

effective SNR reduction which worsens with increasing CFO [21]. Various schemes

have been proposed to mitigate ICI [22]. However, these schemes require complex

processing across subcarriers in the frequency domain, deviating from the model of

processing subcarriers independently. The inherent simplicity of the independent

subcarrier model is one of OFDM’s key benefits and is a primary reason we selected

it for our implementation.

Figure 3.2 illustrates the performance penalty of this CFO-incuded ICI. Each trace

shows SNR verses BER for a different CFO. These are generated by a Monte Carlo

MATLAB simulation of a SISO OFDM link. The simulated OFDM transceiver uses

16

10 MHz bandwidth and 64 subcarriers, 48 of which are loaded with random 16-QAM

data symbols. The only degradations applied between the transmitter and receiver are

CFO and AWGN. The receiver model uses perfect knowledge of the CFO to correct

the phase offset in each OFDM symbol, but does not implement any correction for

ICI. Thus, errors here are due only to noise and CFO-induced loss of orthogonality

in the receiver’s FFT.

20 25 30 35
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

B
E

R

0 Hz
200 Hz
400 Hz
800 Hz
1 kHz
2 kHz
4 kHz
6 kHz
8 kHz
10 kHz
20 kHz

Figure 3.2 : Simulation of SISO OFDM performance loss due to CFO-induced inter-
carrier interference (ICI).

The simulation parameters here are intentionally designed to model our actual

OFDM implementation. Thus, Figure 3.2 provides useful intuition in understanding

the expected impact of various levels of CFO. It is clear from the results that for

large CFOs errors caused by ICI dominate performance, even at high SNR. It is also

clear that for small CFOs performance is dominated by SNR (i.e. nearly all errors are

caused by additive noise). Specifically, for frequency offsets smaller than ≈1 kHz, the

17

performance degradation due to ICI is negligible. This observation plays a key role

in the discussions below, both in gauging the severity of CFOs observed in hardware

(Section 3.3) and in evaluating the performance of the CFO estimation and correction

system (Section 3.5).

3.3 Expectations for CFO on WARP

In order to implement an OFDM transceiver, we must first understand the range

of carrier frequency offsets which can be expected on our hardware platform. As

discussed in Chapter 2, we use standard WARP hardware for each of our nodes.

Clocking in WARP is managed by a dedicated board (the WARP Clock Board [23]),

which uses a Crystek CVT32 temperature-compensated crystal oscillator (TXCO)

as the RF frequency reference. This TCXO provides a clock signal at a nominal

frequency of 20 MHz. An oscillator’s actual frequency, however, varies as a function

of multiple factors, and is only specified by the manufacturer with some tolerance. The

CVT32 is specified with a frequency tolerance of ±4 ppm [24]. This range accounts

for variations between devices, device age and operating temperature (specified for

-20◦C to 80◦C, more than sufficient for our applications). Thus, we must design for

a reference frequency of 20± 0.000080 MHz.

The MAX2829 transceiver on the WARP Radio Board [25] uses a fractional-N

synthesizer to multiply the frequency of the reference clock to generate the RF carrier

signal used for up/downconversion between baseband and RF. The multiplication

factor is programmable at runtime allowing the radio to tune to arbitrary frequencies

in the 2.4 and 5 GHz bands. For a nominal reference frequency of 20 MHz and target

carrier frequency of 2452 MHz, for example, the MAX2829 uses a multiplier of 122.6.

The MAX2829 applies the same multiplication factor even when there are small

18

variations in the frequency of the reference clock. As a result, for a given multiplier

(i.e. a given target carrier frequency), the actual carrier frequency will vary across a

range defined by the reference clock tolerance and frequency multiplier. For example,

for a target carrier frequency of 2452 MHz (multiplier of 122.6), the range of actual

carrier frequencies will be 2452 ±0.009808 MHz (equivalent to 2452 MHz ±4 ppm).

The worst case CFO will occur when the transmit and receive nodes operate at

opposite ends of this range. Thus, for operation in the 2.4 GHz band our OFDM

transceiver design must be ready to handle any carrier frequency offset up to ≈20 kHz.

Given this observation and the results from Section 3.2 above, we conclude that we

will most likely operate in CFO regimes where errors due to ICI cannot be ignored.

3.4 Measured CFO in Hardware

The expectations described above are derived from specifications provided by the

manufacturers of components in the WARP hardware. We can use the WARP hard-

ware and our OFDM transceiver to directly measure the CFO between WARP nodes

to verify these expectations.

WARP
Tx

WARP
Rx40 dB

Attenuator

Coax Cables

WARPnet
Server

Ethernet

Figure 3.3 : Hardware connections for measuring CFO between two WARP nodes.

The configuration of this experiment, illustrated in Figure 3.3, uses radio boards on

two WARP nodes connected via a RF cable and a 40 dB attenuator. This connection

19

emulates a static, frequency flat high-SNR propagation environment. Each node

operates independently, using its local oscillator to generate an RF carrier. One node

acts as a transmitter, sending a full-length packet at regular intervals. The other

node receives each packet and extracts a single CFO estimate. This estimate is sent

via Ethernet to a WARPnet server, where it is recorded to a file for offline processing

(the WARPnet framework is discussed in detail in Section 5.5.1).

We ran this experiment using two pairings of kits built with four different WARP

Clock Boards over long periods to capture frequency variations due to environmental

changes and inherent offsets between different oscillators. The results from two pairs

of nodes are shown in Figure 3.4. The plots show the probability distributions of

observed carrier frequency estimates for two pairs of WARP nodes, calculated as

normalized histograms with 2 Hz bins. Each figure represents ≈1.1 million CFO

measurements gathered during a 40 minute experiment.

2800 3000 3200 3400 3600 3800
0

1

2

3

4

5

6

7
x 10

−3

Frequency Offset (Hz)

P
ro

ba
bi

lit
y

CFO Distribution − 2 Hz Bins

(a)

600 700 800 900 1000 1100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Frequency Offset (Hz)

P
ro

ba
bi

lit
y

CFO Distribution − 2 Hz Bins

(b)

Figure 3.4 : Typical distributions of carrier frequency offsets between two pairs of
WARP nodes.

We can make a few important observations from this data. First, every observed

20

offset falls well within the expected ≈20 kHz range calculated in Section 3.3 based

on the tolerances specified in the reference oscillator datasheet. Second, the offset

between nodes varies significantly with time, largely due to environmental changes

(primarily temperature). These deviations are within specification for the oscillators.

However, understanding the temporal properties of these offsets will be important

and is explored in Section 3.7.1 below.

Finally, it is clear from these experiments that the CFOs cannot be characterized

by a simple distribution. For example, there is a strong dependence on the individual

oscillators, as evidenced by the large difference in mean offset in Figures 3.4(a) and

3.4(b) (note that each histogram represents a different pair of kits). Further, the

shapes of the two examples here are significantly different. Given the large number of

factors which affect each oscillator’s average and instantaneous frequencies, it is not

surprising the measured offsets cannot be characterized by a simple distribution.

3.5 Time Domain CFO Correction

As explained in Section 3.2, large CFOs significantly degrade performance of an

OFDM system due to CFO-induced inter-carrier interference at the receiver. We

expect frequency offsets between WARP kits to have offsets large enough for this

effect to matter. This is supported by both the specifications for the oscillators used

in the WARP hardware and by our own measurements of offsets between WARP kits.

In order to avoid performance degradation due to CFO, it is necessary for an

OFDM receiver to estimate and correct CFO in the time domain, before the receiver

translates received signals into the frequency domain via its FFT. Time domain CFO

estimation is a well studied problem; many estimation algorithms have been proposed,

covering a wide variety of OFDM systems [26, 27].

21

3.5.1 Time Domain CFO Estimation Algorithm

We use an adaptation of a standard and frequently cited technique [28] for our OFDM

receiver’s CFO estimation system. The technique in [28] exploits the periodic nature

of the long training symbols included in each packet’s preamble. The preamble in-

cludes two full copies of the 64-sample training symbol, plus a 32-sample cyclic prefix.

The CFO estimate is calculated by comparing the phases of two samples separated

by their period of repetition in the preamble. Carrier frequency offset manifests as a

phase offset increasing with time. Thus, the phase difference between repeated sam-

ples is proportional to the CFO. Thanks to the cyclic prefix, this holds true even in the

presence of a dispersive channel response. Our implementation calculates 64 phase

differences (one per sample of the long training symbol), averages the differences,

then normalizes the sum to calculate the final CFO estimate.

One challenge in implementing this scheme is synchronizing the CFO estimator

with the incoming packet. The core problem is that the same long training symbols

used for CFO estimation are also used to establish sample-level timing in the receiver.

This timing estimation system is discussed in section 4.1.6. When synchronization

is established, the last long training symbol will have already been received. At this

point, the CFO estimation system needs to use the phases of the previous 128 samples

to calculate its estimate. Further complicating the implementation is the requirement

that the CFO estimate be ready quickly, in time to begin applying a frequency cor-

rection to the samples (composing the channel training symbols) which immediately

follow the preamble. This correction must be applied before the training symbols are

fed into the receiver’s FFT. The latency between establishing synchronization and

calculating a valid CFO estimate is the critical timing path in our OFDM receiver’s

time domain processing pipeline.

22

We address these challenges by realizing the CFO estimation algorithm with an

architecture which operates continuously. Our design, illustrated in Figure 3.5, cal-

culates a new CFO estimate with every received sample. It keeps a running sum of

the phase differences between the 64 most recent samples and the 64 samples before

those. This sum is updated with every received sample. This architecture essentially

pretends every received sample is part of the preamble’s long training symbols and

uses it to update the CFO estimate. The output of this calculation is actually use-

less at all times except in the narrow window following the reception of an actual

preamble. Identifying this window is identical to identifying the boundary for the

first sample of the channel training symbols input to the FFT. This latter task is

accomplished by the correlator discussed in Section 4.1.6. We can re-use the cor-

relator’s synchronization decision to capture the CFO estimate and begin applying

the frequency correction immediately, before samples are fed into the FFT. Our ar-

chitecture of continuously calculating a (frequently invalid) estimate, then capturing

its output in the small window where its validity is known, minimizes the latency

in this critical path. Our implementation produces a valid CFO estimate with a la-

tency of just eight sample periods (seven for a CORDIC arctangent, one for the final

multiplication).

atan(Q/I)
RxQ

RxI

z-64

+
-

z-1z-64
-

Phase Difference Running Sum

x

1
(2π)(642) Capture

z-1 CFOEST+ +

Figure 3.5 : Block diagram of time domain CFO estimator implementation.

23

3.5.2 Performance Expectations

The performance of the CFO estimation algorithm in [28] (and our implementation

thereof) is characterized by two primary factors.

First, the range of frequency offsets which can be estimated is limited by the

sampling rate and the period of training symbol repetitions in the preamble. Our

implementation, with 10 MHz sampling and 64-sample training symbols, can esti-

mate offsets in ±78.1 kHz. This significantly exceeds the maximum possible offset

(≈20 kHz), as determined by the tolerance of the RF reference oscillators.

Second, the performance of the estimator will be subject to real-world degrada-

tions, like voltage fluctuations, phase noise and variable SNR. Using WARPnet and

our OFDM implementation, we can directly measure the real-time performance of

the CFO estimator in hardware.

One challenge in characterizing a CFO estimator is controlling the actual CFO as

an experimental parameter. In practice, frequency offsets change constantly and un-

predictably, varying with time and temperature on sub-second time scales. However,

to measure the error in our CFO estimates, we must know the actual CFO at the

instant each estimate is calculated.

We meet this requirement with a combination of hardware and transceiver modifi-

cations. On the WARP hardware, we use one Clock Board to drive the sampling and

RF reference clocks for two nodes. By sharing these clock signals, we guarantee zero

frequency offset between nodes, even as the actual frequencies of the oscillators vary

with time. In the OFDM transceiver, we add a subsystem to multiply the transmit-

ter’s output waveform by a complex sinusoid with a programmable frequency. This

multiplication does not degrade the waveform in any way; it simply shifts the center

of the transmitted spectrum away from DC. We can emulate any CFO by changing

24

the frequency of this sinusoid, and conduct long experiments confident the CFO will

remain constant.

3.5.3 Radio Transients

In the course of characterizing the performance of our CFO estimator we encountered

an unexpected complication. In early experiments the CFO estimator consistently

produced wildly incorrect results. Specifically, the mean of the CFO estimate differed

significantly from actual CFO. In order to understand the underlying issues, we added

logic to the design which records the 64 phase differences which constitute the average

CFO estimate.

Figure 3.6 illustrates these phase differences. Each trace corresponds to an experi-

ment using a different CFO, ranging from 0 to 4.8 kHz. The Y-axis is phase difference,

expressed as a CFO estimate. The X-axis is the time offset from the beginning of the

received packet. The first 160 samples (16 µsec) are short training symbols, which are

used for AGC convergence and DC offset correction (and not for CFO estimation).

The next 32 samples are the cyclic prefix for the long training symbols. This plot

shows the 64 phase differences taken during the second long training symbol (i.e. in

the final 64 samples of the preamble), hence the range of time values on the X-axis

offset from 0.

Ideally each trace would be constant, taking the value of the actual CFO. Instead,

the traces have a clear trend which spans a larger range of CFO values than the

actual offset. The shape is consistent across actual CFOs and across experimental

trials, suggesting there is another source of degradation which was not accounted for.

Seeking to better understand the shape of the CFO estimate curves, we designed

an experiment using WARPLab [29]. WARPLab is a design flow which uses WARP

25

25 26 27 28 29 30 31 32
−3

−2

−1

0

1

2

3

4

5

6

Time (µsec)

C
F

O
 E

st
im

at
e

(k
H

z)

0 kHz
1.22 kHz
2.44 kHz
4.88 kHz

Figure 3.6 : Phase differences whose mean is used as the CFO estimate, showing the
distortion which skews the CFO estimate.

nodes for RF transmission and reception, but implements all signal processing in

MATLAB. In this test, a transmit node sends a long burst built from many repeated

copies of the long training symbol. This transmission acts like a very long preamble

from which many CFO estimates can be extracted. As in standard WARPLab, the

receive node captures this transmission and offloads the samples to MATLAB for pro-

cessing. In m-code we implement the same CFO estimation algorithm as in hardware.

Because the transmission is composed entirely of periodic training symbols, the CFO

estimation algorithm produces a valid CFO estimate for every received sample.

Figure 3.7 illustrates the results of this test. Each trace again corresponds to

an experiment using a different CFO. But the time-axis here spans a full 100 µsec,

starting with the beginning of the transmitted burst. The large swings in the CFO

estimates are apparent and are consistent with the shorter duration traces in Fig-

26

ure 3.6. Note the range of CFO values produced by the estimator relative to the

maximum ≈20 kHz offset we expect using the WARP hardware. The large deviation

in estimated CFO which decays rapidly with time strongly suggests some underlying

transient in hardware which affects the frequency of either the transmitted or received

waveform.

0 20 40 60 80 100
−60

−40

−20

0

20

40

60

80

100

120

Time (µsec)

C
F

O
 E

st
im

at
e

(k
H

z)

0 kHz
1.22 kHz
2.44 kHz
4.88 kHz

Figure 3.7 : Time domain CFO estimate as a function of offset from the beginning of
a received packet.

In order to isolate this issue to either the transmitter or receiver, we conducted

a similar WARPLab experiment using just one WARP node. In this experiment,

the WARP node acts as a transmitter, and we use an Agilent 89600S vector signal

analyzer (VSA) as the receiver. The WARP node is configured to repeat a simple

cycle:

1. Begin feeding a constant value to the WARP Radio Board DACs;

27

2. Enable the WARP Radio Board transmit path (assert the MAX2829 Tx enable

and power on the PA);

3. Wait ≈300 µsec, leaving the transmit path enabled;

4. Disable the transmitter and PA;

5. Wait ≈1 msec, leaving the transmit path disabled.

By feeding a constant value into the baseband inputs of the MAX2829 transceiver

(via the transmit DACs), the radio board will generate an RF sinusoid centered ex-

actly at the radio’s carrier frequency. In normal operation this is undesirable (often

called “carrier leakage” or “local oscillator leakage”) as it is usually necessary for

transmitted waveforms to have zero DC component. This is true for our OFDM

implementation, as well as in standards like 802.11a/g/n, where the DC subcarrier

is always filled with zero. Further, the MAX2829 actually implements DC-blocking

high-pass filters in its receive path to allow better settling of transients in its ampli-

fiers. But for this experiment, transmitting only DC generates the ideal output- a

simple, unmodulated sinusoid at exactly the carrier frequency. In order to capture

transients at the initiation of a transmit cycle, is also important the constant input to

the DACs be initiated before the radio is enabled; this required a slight modification

to the standard WARPLab design.

The VSA can be considered as the “perfect” receiver. The RF performance of the

VSA hardware (additive noise, phase noise, quantization artifacts, I/Q gain/phase im-

balance, spectral flatness, etc.) significantly exceeds the performance of a system built

with WARP Radio Boards. This is no surprise, given their relative costs, sizes, ca-

pabilities and intended applications. The VSA software is comparably sophisticated,

capable of processing a wide variety of waveform designs and modulation schemes.

28

The VSA operates by downconverting an RF waveform to baseband, digitizing and

buffering it, then offloading it to a PC for offline processing. This is conceptually

similar to WARPLab; the VSA hardware captures blocks of waveforms in real-time,

but processes them elsewhere much slower than real-time.

For this experiment we configure the VSA to begin its capture upon the reception

of an energy spike corresponding to the start of the WARP node’s transmit cycle.

We use the relatively simple VSA software mode designed for processing analog phase

modulation (PM) signals. The VSA’s PM demodulator implements a CFO compensa-

tion stage which estimates CFO by analyzing the frequency content of the full received

waveform (access to the full waveform being a key benefit of offline processing). The

VSA then constructs a new signal which is proportional to the instantaneous phase of

the captured, downconverted, CFO-corrected waveform. Given that our transmitted

baseband signal is a constant, this CFO-corrected, PM-demodulated output should

be zero.

The results of this test are shown in Figure 3.8. The top trace shows the received

baseband signal before the VSA software applies CFO correction. The low-frequency

sinusoid is a direct manifestation of CFO, oscillating at a frequency equal to the

difference in carrier frequencies of the transmitting WARP node and VSA downcon-

verter. The second trace shows the received signal power on a log scale, wherein the

beginning of the WARP node’s transmission is clear. The third shows the output of

the VSA’s PM demodulator. In all three traces the signals look as expected for the

majority of the test. However, there are some irregularities early in the transmission

that merit a closer look.

Figure 3.9 presents the same traces, zoomed in to the first 50 µsec of the received

waveform. At this time scale the distortions in the received waveform are clear. The

29

0 50 100 150 200 250 300 350

−0.05

0

0.05

R
x

S
ig

na
l (

v)

Received Baseband Signal (CFO Un−corrected)

0 50 100 150 200 250 300 350
−100

−80

−60

−40

−20

R
x

P
ow

er
 (

dB
v)

Received Baseband Signal Power

0 50 100 150 200 250 300 350

−30
−20
−10

0
10

P
ha

se
 (

ra
di

an
s)

Time (µsec)

Instantaneous Phase Offset (CFO Corrected)

Figure 3.8 : Transients in instantaneous frequency offset immediately after enabling
the radio transmit path, as calculated by the VSA.

raw baseband signal (top trace) only settles to the expected low-frequency sinusoid

in the latter half of the plot. The amplitude and phase distortions (middle and

bottom traces) are likewise apparent. Take note of the timing of the peaks in the

phase distortion as measured by the VSA, and compare them to the peaks in the

CFO estimate in Figure 3.7. These curves are closely related- rapid phase changes

(observed by the VSA) correspond to large deviations in CFO estimates (calculated

on WARP), and the timing of the curves align perfectly. These traces conclusively

demonstrate the underlying cause of the erroneous CFO estimations are distortions

incurred at the transmitter in the first ≈35 µsec after the radio transmitter and power

amplifier are enabled.

30

0 5 10 15 20 25 30 35 40 45

−0.05

0

0.05
R

x
S

ig
na

l (
v)

Received Baseband Signal (CFO Un−corrected)

0 5 10 15 20 25 30 35 40 45

−24.8

−24.4

−24

R
x

P
ow

er
 (

dB
v)

Received Baseband Signal Power

0 5 10 15 20 25 30 35 40 45

−4

−2

0

2

P
ha

se
 (

ra
di

an
s)

Time (µsec)

Instantaneous Phase Offset (CFO Corrected)

Figure 3.9 : Same data as Figure 3.8, zoomed in on first 50 µsec after the transmitter
is enabled.

While the relationship between errors in CFO estimates and phase distortion at the

transmitter is clear, the underlying cause of the distortions merits investigation. The

rapid phase changes are clearly related to enabling the radio transmitter and power

amplifier on the WARP Radio Board, which suggests a source for the distortions in

the hardware itself. Thankfully we have access to the right equipment to measure

signals in hardware at runtime.

In the WARP Radio Board design, the MAX2829 transceiver and PA share a

power supply [25]. This supply is a linear voltage regulator on the radio board

which regulates down the board-level 3.3 V supply to a 2.9 V supply used by the

MAX2829 and PA. We can measure the instantaneous voltage of this supply in real-

31

time using a high speed oscilloscope. In fact, we can measure the voltage very near

to the MAX2829 by probing across the pins of a decoupling capacitor adjacent to

the transceiver. A photo of this probing setup is show in Figure 3.10. The blue tips

of the oscilloscope probes are visible on either side of the (very small) capacitor. A

third blue probe tip is visible in the upper-left, probing a digital signal which asserts

when the MAX2829 and PA are enabled.

Figure 3.10 : Measuring the instantaneous voltage on the WARP Radio Board.

Figure 3.11 shows the oscilloscope traces for this test. The top trace is the digital

signal indicating when the transmit cycle begins. The bottom trace is the voltage

of the supply feeding the MAX2829 and PA. The vertical scale is 50 mV per major

grid tick, giving a peak-to-peak deviation in the supply voltage of ≈180 mV. This is

a significant fraction of the nominal voltage of 2.9 V. The horizontal scale is 5 µsec

per major grid tick. Note the time between peaks of the voltage trace, approximately

8 µsec. This corresponds exactly to the shapes of the distortions in CFO estimates

32

(Figure 3.7) and phase distortions calculated by the VSA (Figure 3.9).

Figure 3.11 : Oscilloscope measurement of the instantaneous transmitter state (top
trace) and supply voltage (bottom trace) on the WARP Radio Board during the start
of a transmission.

We conclude from this test that the primary cause of the phase distortions we

observe early in a transmitted waveform are due to transients in the supply voltage

in the radio hardware itself. In retrospect, this result is not surprising. Both the

MAX2829 transmit circuitry and the power amplifier draw significant amounts of

current from the board’s power supply. When these circuits are enabled the current

load increases very quickly. The linear regulator requires some time to compensate

for the sudden change in load, during which its output voltage droops. As the supply

voltage changes, the frequency of the MAX2829 RF carrier drifts as the transceiver’s

PLL attempts to track the frequency of its VCO relative to the frequency reference.

This drift manifests as rapid frequency changes taking on the same shape as the un-

derlying voltage transient. The whole system settles after a few 10’s of microseconds,

33

after which the supply voltage and carrier frequency are stable.

Understanding the underlying cause of the CFO estimation errors allows us to

consider potential solutions. One option is to design an algorithm to digitally pre-

compensate for the phase distortions in the transmitted waveform. This approach

would be very difficult, primarily because the magnitude and timing of the voltage

transients are not fixed. The shape of the transient is not constant across WARP

radio boards, as it varies with individual component values as well as environmental

factors (i.e. temperature). Thus, in order to apply its inverse, any compensation

scheme would require frequent re-calibration to measure the current transient profile.

And because the WARP Radio Board is a half-duplex transceiver, an additional radio

board (or VSA) would be required to act as the receiver in the calibration process.

Instead, we chose the simple solution of introducing a delay between enabling the

radio’s transmit circuitry and driving the initial samples of our transmitted waveform

into the radio board’s DAC. Choosing the delay requires placing the preamble’s long

training symbols late enough in the transmitted waveform that the phase distortions

have decayed sufficiently far to not degrade the CFO estimate. The traces in Fig-

ure 3.7 provide a good guide on choosing a delay (these curves are representative of

all the WARP Radio Boards we tested). In our design, we delay the initial samples

by 5 µsec, placing the end of the second long training symbol, and thus valid CFO

estimate, at 37 µsec after the transmitter is enabled. At this offset, neither the volt-

age or phase measurements show any deviation, and the CFO estimate has settled to

its expected value.

34

3.5.4 Performance Measurements

Having mitigated the issue of phase distortions early in the transmit waveform, we can

finally conduct a meaningful characterization of our CFO estimator’s performance.

OFDM
Tx x

e j 2πx t

WARP Tx

Channel
Emulator

WARP Rx

RF Reference Clock

Logger

CFO
Estimator

Figure 3.12 : Hardware configuration for characterizing performance of the time
domain CFO estimation implementation.

For these experiments, we use a hardware setup illustrated in Figure 3.12. The

WARP nodes share an RF reference clock, giving precise control of the CFO via inten-

tional offsets applied at the transmitter. The RF interfaces of the WARP nodes are

connected via the Azimuth channel emulator; the emulator is discussed in Section 5.2.

The channel emulator enables control of the propagation channel characteristics with-

out having to modify any settings in the WARP nodes themselves. For charactering

our CFO estimator, we use a static channel profile whose only parameter is path loss,

realized by a programmable attenuator at the output of each of the emulator’s RF

outputs. Each path through the emulator has a minimum path loss of ≈53 dB. The

total path loss is the sum of this minimum loss and the value of the programmable

output attenuator.

Using WARPnet we are able to coordinate the behavior of the emulator with our

design running on WARP. As explained above, our CFO estimator calculates one

estimate per received packet. Thus, to gather sufficient samples of the CFO estimate,

35

we need to transmit and receive many packets per combination of values of our inde-

pendent variables. For these tests, we sweep both SNR (realized as attenuation in the

emulator) and CFO (controlled by the artificial CFO applied at the transmit WARP

node).

In this experiment, one WARP node periodically transmits a full-length OFDM

packet. The other node receives the transmission, attenuated via the channel emula-

tor, and extracts a CFO estimate. This estimate is transmitted via Ethernet using

WARPnet for logging and offline processing. As the design runs in real-time, we can

gather a significant number of samples from our estimator in fairly short experiments.

Figure 3.13 shows the distribution of CFO estimates for one combination of atten-

uation and CFO. The bars represent the normalized histogram of the CFO estimates,

calculated with 30 Hz bins. The overlaid line shows the Gaussian curve calculated

using the empirical mean and standard deviation. The curve clearly fits the data very

well. The mean estimate is equal to the actual CFO, as expected.

The results of the full sweep of SNRs and CFOs are shown in figure 3.14. Here, the

performance is characterized by the standard deviation of the estimates at each point,

drawn as 2σ. There are a few things worth noting here. First, the performance of the

estimator is largely independent of the actual CFO. This is as expected; the estimation

algorithm is designed to function equally well over a wide range of offsets, breaking

down only for very large offsets, much larger than our hardware will experience.

Second, the performance clearly improves with increasing SNR, but does show

a floor developing at the highest SNRs. This is consistent with our expectations.

Increasing the SNR (realized by applying less attenuation between the Tx and Rx

nodes) reduces the impact of additive noise at the receiver, but does not reduce

the impact of phase noise incurred at both transmitter and receiver. Given that our

36

CFO estimator derives its estimate from phase values, the overall performance should

be dominated by phase noise above some SNR. We cannot control or eliminate the

inherent phase noise characteristics in the WARP hardware (much less the emulator).

1600 1800 2000 2200 2400 2600 2800 3000 3200
0

0.01

0.02

0.03

0.04

0.05

0.06

Frequency Offset Estimate (Hz)

P
ro

ba
bi

lit
y

Coarse CFO Estimate
(30 Hz bins, CFO = 2.44 kHz, 284654 Observations)

σ = 209.0 Hz

Figure 3.13 : Distribution of time domain CFO estimates for fixed CFO at high SNR,
as measured in hardware.

Fortunately, the floor in CFO estimation performance is entirely acceptable for

our application. Any estimation error in the time domain CFO correction system

will manifest as residual CFO in the frequency domain. An OFDM receiver can

tolerate small residual CFOs, where “small” is defined by a negligible degradation in

performance due to CFO-induced ICI. For example, consider the case of σ = 209 Hz

in Figure 3.13, and compare this to the CFO vs. BER curves in Figure 3.2. Assuming

a normal distribution for CFO estimates (well supported by the fit in Figure 3.13),

our implementation can provide an estimate within 627 Hz (3σ) for more than > 99%

of packets. A residual CFO of 627 Hz induces negligible ICI in an OFDM system

with subcarrier spacing of 156.25 kHz (64 subcarriers in 10 MHz bandwidth).

37

−35 −30 −25 −20
0

200

400

600

800

1000

1200

1400

Attenuation

F
re

qu
en

cy
 E

rr
or

 (
H

z)

Coarse Estimate Error (2 Std Dev)

 305
 610
1221
2441
4883
9766

CFO (Hz)

Figure 3.14 : Estimation error (2σ) for the time domain CFO estimator for multiple
CFOs and SNRs, as measured in hardware.

For a clearer view of this, consider Figure 3.15. These BER values are drawn from

the same data as Figure 3.2, isolating the points for CFOs below 1 kHz. At every

CFO, the BER performance is dominated by SNR, with only the highest SNR curve

showing even a small performance degradation at the highest CFO.

3.6 Frequency Domain Phase Correction

As discussed above, the time domain CFO estimation system seeks to minimize the

impact of ICI by reducing the CFO before samples are fed into the receiver’s FFT.

However, it is clear this estimator will rarely remove all CFO, leaving a residual offset

which will propagate into the frequency domain. The impact of this residual offset

is a time varying phase offset. The offset is the same across subcarriers in a single

38

0 0.2 0.4 0.6 0.8

10
−8

10
−6

10
−4

10
−2

CFO (kHz)

B
E

R

20.0 dB
22.5 dB
25.0 dB
27.5 dB
30.0 dB
32.5 dB
35.0 dB

Figure 3.15 : BER vs. CFO, for small CFOs and multiple attenuations.

OFDM symbol but increases linearly with each OFDM symbol at a rate proportional

to the residual CFO. While the time domain estimator bounds the residual offsets to a

range for which ICI is negligible, these increasing phase offsets must still be corrected

as part of the channel equalization processing.

For example, consider a residual CFO (i.e. time domain CFO estimation error)

of 200 Hz (≈1σ for the estimate distribution in Figure 3.13) and a full-length packet

modulated at QPSK. This packet occupies ≈10,000 samples which, at 10 MHz band-

width, span a 1 msec duration. Over the course of 1 msec, a 200 Hz frequency offset

will cause phase offsets which increase from zero (at the start of the packet) to 72◦

(at the packet’s end). For QPSK, any uncorrected offset larger than 45◦ guarantees a

symbol error. In a real system, any uncorrected phase offset will degrade performance

via reduced noise margins by rotating received symbols away from the centers of the

constellation decision regions. Our receiver clearly needs to correct for these phase

39

errors, even when caused by very small residual frequency offsets.

There are two primary components to this process: phase error estimation and

phase error correction. The phase error estimates serve as inputs to the correction

calculation, which provides an updated phase correction value for each OFDM symbol

to be applied during equalization.

Our transceiver, like most OFDM systems, dedicates subcarriers for use as pilot

tones. We use the same subcarrier mapping as IEEE 802.11a, with four pilots per

OFDM symbol, each populated by pseudo-random BPSK symbols. The pseudo-

random sequence is the same for every packet; the receiver can estimate instantaneous

phase errors from the difference in phases between the transmitted and equalized

pilots. Our design computes the phase error of each pilot, then takes the average to

produce a single error estimate per OFDM symbol.

One complication arises in adapting this scheme for a 2×1 Alamouti system.

It is generally undesirable to transmit the same waveform from multiple antennas

simultaneously, in order to avoid the unintentional formation of beam patterns that

may degrade signal quality at receivers via destructive combining. In the context of

OFDM, this means we should avoid sending similar signals (like pilot tones) on the

same subcarrier from multiple antennas (or multiple nodes) simultaneously.

One option would be to Alamouti-encode the pilot tones, giving them the same

space-time orthogonality as the payload symbols. This approach would require the

receiver to perform Alamouti combining before useable pilot tones were available for

phase error estimation. However, Alamouti coded systems are especially sensitive

to phase errors which vary between received symbols, as they do when caused by

frequency offsets. This property of the Alamouti STBC has been analyzed at length

in the literature [30, 31].

40

An intuitive explanation for this sensitivity can be found in the quasi-static fading

assumption underlying the Alamouti code. The Alamouti code requires channel co-

efficients remain constant (in both magnitude and phase) across two symbol periods.

However, a carrier frequency offset induces a phase offset which changes with every

received symbol. If the per-symbol phase offsets are left uncorrected before Alamouti

combining, the transmitted symbols are not fully re-orthogonalized, resulting in an

effective SNR loss due to ISI.

A straightforward way to combat this sensitivity is to apply per-symbol phase

corrections before the combining stage. This approach means the pilots cannot be

Alamouti encoded, necessitating we use some other orthogonalization method. We

use a simple scheme of orthogonalizing the pilots explicitly, by interleaving them

between antennas in time and frequency, but never transmitting pilots on the same

subcarrier from both antennas (or from both the source and relay nodes) at the same

time. Our interleaving pattern is illustrated in Figure 3.16. There are four pilot tones

per OFDM symbol period, two on each stream (a stream corresponds to one antenna

in a two-antenna system, or to one node in a two-node cooperative transmission).

Swapping the subcarrier assignments between streams in alternate symbol periods

greatly simplifies the implementation. Note this interleaving pattern assures at least

two pilot tones are transmitted in every symbol period, even if one stream is missing.

This is an important property as it helps preserve diversity, allowing the receiver to

estimate phase errors with every symbol even in cases where one stream is missing

(e.g. due to a deep channel fade).

As with time domain CFO correction, the literature offers a wide range of phase

error correction schemes. We utilize one developed by researchers at Toshiba [32].

This algorithm is designed explicitly for a real-time system, generating phase cor-

41

Stream A

Stream B

Pilot Tones

Empty
Subcarriers

OFDM Symbol Period

Payload
Subcarriers

Figure 3.16 : Subcarrier mapping of pilot tones, interleaved in time and across an-
tennas.

rection values per OFDM symbol with very low latency. The implementation of this

technique is straightforward, requiring only a few registers and arithmetic blocks, and

functions as expected, providing reliable phase correction values which are applied to

received symbols immediately before Alamouti combining.

3.7 CFO in a Cooperative System

The discussion above presents the issue of CFO for a standard OFDM system, our

expectations for CFO between WARP nodes and the successful design and evaluation

of a time domain CFO correction system. However, additional CFO issues arise in

extending our OFDM design to support cooperative communications.

As discussed in Chapter 2, our work focuses on cooperative communications among

fully distributed nodes. These nodes must coordinate their behavior using the same

wireless interfaces over which they communicate payloads. Most importantly, they

share no back-channel synchronization mechanisms. From the perspective of CFO,

this means each node operates with an independent local reference oscillator whose

frequency varies relative to every other node. In the case of non-cooperative trans-

42

missions, the inter-node CFOs are handled by the estimation and correction systems

discussed above. However, when multiple cooperating nodes transmit simultaneously,

a new complication must be addressed.

Consider the simple two slot cooperative exchange illustrated in Figure 3.17. In

the first time slot, the source node transmits a packet which is received by the relay

and (potentially) by the destination. Both the relay and destination apply the CFO

estimation/correction scheme discussed above in attempting to receive the transmis-

sion. Each node observes a different CFO, defined by the offset of its local oscillator

to that of the source. In the second slot, both the source and relay transmit to the

destination. In this case, the destination receives a waveform which is the sum of

two transmissions, each with its own CFO. This is a different problem, one which the

standard OFDM CFO estimation/correction schemes discussed above cannot address.

R

S D

R

S D

∆fS1R1

∆fS1D1

∆fR2D2

Time Slot 1 Time Slot 2

∆fS2D2

Figure 3.17 : Simple two slot cooperative exchange, indicating each inter-node CFO
from the perspective of the receiving nodes.

3.7.1 Temporal Properties of CFO

The first step in understanding the issue of dual-CFOs is to investigate whether, in

a two time-slot cooperative transmission, knowledge of CFOs from the first slot can

be useful in mitigating CFO in the second. Such knowledge will only be useful if

43

the carrier frequencies remain nearly constant across the two time slots. This will

be determined by the “coherence time” of the carrier reference oscillators. Unfortu-

nately, short-term temporal stability is not specified for the TCXO’s used on WARP

(or for any TCXOs we have seen). Instead, we need to characterize the stability

experimentally.

Fortunately, we can use the same WARP setup discussed above. In fact, we can use

the same data underlying the distributions shown in Figure 3.4. In that experiment,

the transmitting WARP node sends a new packet every 2.1 msec for 40 minutes.

The receiver computes a new CFO estimate for every packet, which is logged via

WARPnet.

Figure 3.18 shows the results from the same experiment, plotted here as individual

CFO measurements verses time. These plots present the time-series data used to

calculate the histogram in Figure 3.4(b). The four subplots show the data at various

time scales, zooming in from the full view of 1.1 million samples in 40 minutes down

to 47 samples in 100 msec. The X-axes are all actual time, measured in seconds. The

Y-axes are the measured frequency offset in Hz.

A few characteristics stand out. First, at every time scale, the offsets appear

random. This is consistent with our expectations, given the random nature of the

underlying causes of oscillator frequency variation. Second, on short time scales, the

measured offset either changes by very small or very large amounts. For example,

note the sudden changes in Figure 3.18(b). On a few occasions, the CFO jumped by

more than 100 Hz in a single packet duration. But these jumps are rare; the vast

majority of inter-packet CFO changes are small, which is clear in Figure 3.18(d).

One useful way to better quantify the temporal behavior of CFO is to calculate

the distribution of inter-packet changes in observed offsets. This is straightforward,

44

1655 1660 1665 1670 1675 1680 1685 1690 1695

860

880

900

920

940

960

Time (s)

Fr
eq

ue
nc

y
O

ffs
et

 (H
z)

18935 Observations in 40 seconds

0 500 1000 1500 2000

650

700

750

800

850

900

950

1000

Time (s)

Fr
eq

ue
nc

y
O

ffs
et

 (H
z)

1136108 Observations in 40 minutes

1659 1659.5 1660 1660.5 1661
920

925

930

935

940

945

950

955

960

Time (s)

Fr
eq

ue
nc

y
O

ffs
et

 (H
z)

947 Observations in 2 seconds

1660.1 1660.125 1660.15 1660.175 1660.2

930

935

940

945

950

Time (s)

Fr
eq

ue
nc

y
O

ffs
et

 (H
z)

47 Observations in 0.1 seconds

(a) (b)

(d)(c)

Figure 3.18 : Measurements of actual CFO between two WARP nodes, captured at
2.1 ms intervals for 40 minutes. Plots (b)-(d) each show a subset of data from plot
(a) over smaller time intervals.

given the periodic transmissions used to gather the CFO vs. time data above. The

results are shown in Figure 3.19. This distribution is computed as a histogram of

the absolute inter-packet frequency offset change, with packets spaced at 2.1 msec

intervals. The histogram bins are 1 Hz wide.

Of particular importance is how the inter-packet frequency drift is heavily con-

centrated towards low values (note the Y-axis is probability on a log sale). In this

experiment, the probability of a CFO change greater than 100 Hz in 2.1 msec is

45

0 20 40 60 80 100 120 140 160 180

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency Drift at 2.1ms (Hz)

P
ro

ba
bi

lit
y

CFO Drift Distribution − 1 Hz Bins
(1136108 observations in 40 minutes)

Figure 3.19 : Distribution of CFO drift, from the same experiment as Figure 3.4(b).

just 1.7 · 10−4. This is promising, indicating that we can expect very similar CFOs

across the two time slots of a cooperative transmission. In fact, this experiment is

rather pessimistic, transmitting once every 2.1 msec. This is the maximum duration

of a packet transmission in our design, corresponding to a full length (1500 byte)

payload modulated with BPSK. When using faster modulation rates, this duration

drops significantly (≈1 msec for QPSK, ≈500 µsec for 16-QAM), further reducing

the probability of large CFO changes between time slots. These results suggest that

it is fair to assume carrier frequencies will remain nearly constant across the two

back-to-back slots of a cooperative transmission as illustrated in Figure 3.17 (i.e.

∆fX1Y1 ≈ ∆fX2Y2).

46

3.7.2 Mitigating CFO in a Cooperative System

The problem of different carrier frequency offsets among cooperating transmitters and

techniques to mitigate their impact have been discussed in the literature [33–35].

In [33], the authors develop an algorithm for mitigating the impact of dual fre-

quency offsets in a cooperative system employing a distributed version of the Alamouti

code. Their technique adds an iterative equalizer in the frequency domain which at-

tempts to remove two sources of error: ICI, due to lost orthogonality between sub-

carriers in the FFT, and ISI, due to lost orthogonality between Alamouti streams.

Unfortunately, the estimation process in [33] requires knowledge of the CFO and prop-

agation channel for each transmitter and the number of nodes participating in each

transmission. It also adds significant complexity to the OFDM receiver. And while

their scheme outperforms previously proposed alternatives the authors acknowledge it

still falls short of the performance possible when no CFO exists between transmitting

nodes.

In [34] the authors propose a scheme for fully mitigating the impact of dual fre-

quency offsets, but their approach is unsuitable for use in our system for a number

of reasons. First, it requires extending the cyclic prefix of every OFDM symbol by

a huge amount. For two transmitting nodes, the new prefix would nearly double

the duration of a packet. This extra transmission time is all overhead. Second, this

technique requires a substantial amount of processing in the time domain, including

operations which require knowledge of the time domain response of the channel to

each transmitter. This degrades one of the key benefits of using OFDM, wherein a

single frequency domain channel coefficient is required for equalizing each subcarrier.

While this technique can (in theory) match the performance of a system with no

CFO between transmitting nodes, its complexity and estimation requirements render

47

it unusable for our implementation.

Finally in [35], the authors consider the design of a distributed Alamouti sys-

tem very similar to ours. They develop an extension of moderate complexity to the

standard Alamouti receiver which can compensate for different frequency offsets at

the transmitting nodes. The authors also analyze the sensitivity of their scheme to

errors in the estimates of these CFOs. In their analysis, they find the scheme to be

very sensitive to even small estimation errors. Their results show that for reasonable

CFOs and SNRs, CFO estimation errors of just a few percent reduce BER perfor-

mance below that of a non-cooperative SISO link. Given our experiments with CFO

estimation accuracy and temporal oscillator frequency variations, we decided against

basing our implementation on this algorithm.

Instead, our design uses a different approach. Rather than require the destination

to estimate both the ∆fSD and ∆fRD carrier frequency offsets and correct their

combined impact, our design attempts to mitigate the dual-CFO issue at the relay.

This technique requires the relay attempt to remove the effect of its own carrier

frequency whenever it cooperates in a transmission with the source. This is rather

intuitive, seeking to have cooperating transmitters act as a virtual antenna array

operating with a common carrier frequency.

Pre-correcting the CFO at the relay provides two key benefits. First, no extra

processing is required at the destination, preserving the very useful feature of a re-

ceiver design which does not require knowledge of how many nodes are participating

in a given transmission. Second, no extra overhead is required; the relay extracts

everything it requires from the source’s normal transmission.

The methods required to realize CFO pre-cancellation at the relay depend on the

underlying cooperative scheme.

48

3.7.3 CFO with Amplify and Forward

We start our investigation of CFO in an amplify and forward system by constructing

a simple model of the relevant baseband and RF signals. Consider a network of three

nodes S, R and D. Assuming each node employs an independent oscillator, their local

carrier frequencies are ωS, ωR and ωD, respectively.

It is clear that any signal the destination receives directly from the source will have

a frequency offset of (ωS − ωD). The impact of CFO on the signal which propagates

through the relay requires more careful consideration. Figure 3.20 illustrates the

multiple baseband and RF signals which constitute the path through the relay.

Tx Rx Tx Rx
SBB SRF RBB RRF DBB

Source Relay Destination

Figure 3.20 : Signals for the path through the relay in an amplify and forward link.

Using the RF transceiver models and expressions from Section 3.1, we can trace

the impact of CFO through this path. Expressing RBB in terms of SBB and the

source/relay carrier frequencies gives

RBB = SBB(ejt(ωS−ωR)). (3.3)

Repeating this process to find DBB in terms of SBB gives

DBB = RBB(ejt(ωR−ωD))

= SBB(ejt(ωS−ωR))(ejt(ωR−ωD))

= SBB(ejt(ωS−ωD)).

(3.4)

49

Notice thatDBB is not a function of ωR and that the frequency offset here (ωS−ωD)

is the same as for the direct source-destination path. The process of AF relaying, re-

alized as downconverting then upconverting the same baseband waveform, effectively

removes any trace of the source-relay frequency offset, transmitting a signal at exactly

the source’s carrier frequency.

This is a very useful property. Amplify and forward relaying inherently provides

CFO pre-cancellation at the relay without any extra processing. Of course, perfect

pre-cancellation requires no change in carrier frequencies between the two time slots.

However, any pre-cancellation scheme (including the one we use for DF, discussed

below) has the same dependence on the temporal stability of carrier frequencies.

With real-world oscillators, no pre-cancellation will be perfect, but AF inherently

achieves the base-case.

3.7.4 CFO with Decode and Forward

Our DF implementation essentially attempts to actively mimic the self-cancellation

of CFO at the relay which occurs passively with AF. This approach adds some com-

plexity to the relay’s receiver, but is far simpler than implementing the alternative

destination-based dual-CFO estimation/mitigation schemes discussed above.

The basic process for pre-cancellation of CFO is for the relay to estimate ∆fSR

(the source-relay CFO) in the first time slot, then apply the opposite frequency shift

to its own transmission. Ideally this will result in a relay transmission whose carrier

frequency exactly matches that of the source. From the destination’s perspective, it

will receive the sum of two waveforms, each of which is shifted by the same offset

(∆fSD), just as if a single two-antenna node had transmitted both waveforms.

There are two limiting factors in this approach. First, ∆fSR must not change

50

significantly between time slots. Based on the results presented in Section 3.7.1, we

know the CFO is fairly stable on packet time scales. In the vast majority of cases,

the CFO drift over 2.1 msec was less than 20 Hz; we need to establish whether even

this small drift is tolerable. Second, the accuracy with which the relay can estimate

∆fSR is critical. To understand this issue, we must quantify the tolerance for CFO

estimation errors at the relay.

Recall that CFO degrades performance in an OFDM two ways: via ICI, due to

lost orthogonality in the FFT, and via phase offsets, which increase over the course of

a packet reception. We will focus on the impact of the phase offsets here (as will be

clear below, the magnitude of CFOs which matter here are much smaller than those

for which the effects of ICI dominate).

A thorough analysis of the impact of different CFOs for cooperating nodes is

provided in [35]. For our purposes, we only need a rough idea of the CFO tolerance,

primarily to decide whether our existing time domain CFO estimator is sufficiently

accurate for use in pre-correcting CFO at the relay.

We first test this tolerance experimentally. Recall the experimental setup de-

scribed above for characterizing the performance of our time domain CFO estimator.

We use a similar setup here, illustrated in Figure 3.21. Two nodes (source and relay)

share reference clocks, which allows a precise frequency offset to be applied to the

source’s transmission. A third node (the destination) acts as the receiver. The two

transmitters implement a distributed Alamouti encoder, with each node transmitting

complementary halves of the usual two-antenna Alamouti transmission. The receiver

operates independently, implementing a standard Alamouti receiver. We sweep the

frequency offset between the two transmit nodes starting at 0 Hz and record the BER

and PER for each offset. As a reference, we also test the BER/PER of a single-

51

node transmission at each point. These tests are conducted via the channel emulator

at high SNR with frequency flat fading, using 1500 byte payloads modulated with

QPSK.

WARP
S

Channel
Emulator

WARP
D

RF Reference
Clock WARP

R

Figure 3.21 : Hardware configuration for characterizing the destination’s tolerance
for CFO between source and relay transmissions.

The results of this experiment are shown in Figure 3.22. The X-axis is the CFO

between transmitters in Hz. The Y-axes are the packet and bit error rates, respec-

tively. It is clear that even a small frequency offset between transmitting nodes has a

significant impact on performance. In fact, any offset greater than ≈120 Hz reduces

performance below that of a single antenna transmission.

This observation indicates our existing time domain CFO estimator is insufficient

for CFO pre-correction at the relay. Based on the distribution of CFO estimates in

Figure 3.13, 54% of time domain CFO estimates deviate from the actual offset by

more than 120 Hz under ideal propagation conditions (high SNR, static channel coef-

ficients). We clearly require a more accurate CFO estimator for use in pre-correcting

offsets at the relay.

We can verify this requirement with a small modification to our experiment. The

two transmit nodes still share reference clocks, and one node (the source) continues

to apply a small frequency offset to its transmission. The other (the relay) estimates

52

0 100 200 300 400 500 600

10
−2

10
−1

10
0

PER

P
ac

ke
t E

rr
or

 R
at

e

One Tx Node
Two Tx Nodes

0 100 200 300 400 500 600
10

−6

10
−4

10
−2

10
0

BER

CFO Between Tx Nodes (Hz)

B
it

E
rr

or
 R

at
e

Figure 3.22 : Experimental PER/BER performance vs. CFO between transmitting
nodes.

this offset using its time domain CFO estimator while receiving the source’s transmis-

sion, then applies this offset to its own transmission to the destination. The results of

this modified experiment are shown in Figure 3.23. The axes are the same as above,

and the PER/BER for a single antenna (source-only) transmission is included for

reference. As expected, the performance of the two-node transmission is independent

of the source/relay CFO, since the time domain CFO estimator functions equally

well over a wide range of offsets. However, the two-node performance is now consis-

tently much worse than that of the single-antenna link. This can be understood by

recalling the distribution of CFO estimates produced by the time domain estimator

(Figures 3.13 and 3.14), and comparing the distribution to the BER/PER curves in

Figure 3.22. With high probability, the error in the time domain CFO estimate will

53

0 100 200 300 400 500 600

10
−2

10
−1

10
0

PER

P
ac

ke
t E

rr
or

 R
at

e

One Tx Node
Two Tx Nodes

0 100 200 300 400 500 600
10

−6

10
−4

10
−2

10
0

BER

CFO Between Tx Nodes (Hz)

B
it

E
rr

or
 R

at
e

Figure 3.23 : Experimental PER/BER performance vs. CFO between transmitting
nodes, where one transmitting node applies CFO pre-correction based on its time
domain CFO estimate.

exceed the very small tolerance for inter-transmitter CFO. When the error is suffi-

ciently large, symbol errors due to diverging CFO-induced phase errors will dominate

PER/BER performance, as clearly illustrated in Figure 3.23.

One other observation we can make from these results relates to the inter-packet

drift in carrier frequencies. Based on Figure 3.22, the performance degradation due

to inter-transmitter CFO is very small for offsets smaller than ≈30 Hz. Compare

this to the frequency drifts plotted in Figure 3.19. This is very promising, indicating

that the vast majority inter-packet frequency changes will be small enough to have

negligible impact on the performance of a two time-slot cooperative transmission.

One final aspect of CFO estimation for pre-correction at the relay is that the

54

tolerances for estimation errors varies with the modulation order and duration of

cooperative transmissions. The effect of CFO at the destination is a phase error

which increases linearly with time, where the rate of increase is proportional to the

frequency offset. These phase errors manifest as rotations of the constellations in the

receiver. Thus, longer packets and those using higher order modulations are more

sensitive to errors in the pre-correction of CFO at the relay. This observation plays

an important role in evaluating designs for the relay’s CFO estimator.

3.7.5 Frequency Domain Residual CFO Estimation

The time domain CFO estimator discussed above works for reducing CFO to a toler-

able level for successful reception of single-node transmissions, but provides estimates

with too high a variance for use in pre-correcting CFO at the relay. We need to

develop a secondary CFO estimator for this purpose.

One reason the time domain CFO estimator operates with high variance is that

it must calculate the CFO using only a small number of samples from the packet

preamble in order to begin correcting the CFO before any data-bearing samples are

input to the FFT. In the case of CFO pre-correction at the relay the timing is re-

laxed significantly, requiring an estimate only before the relay begins its cooperative

transmission in the second slot. This allows the relay to use much more information

from the packet received in the first slot to derive its CFO estimate.

The obvious place to start with designing this CFO estimator is with the phase

error estimator already used in the OFDM receiver. Recall that our OFDM design

dedicates four subcarriers for use as pilot tones. These tones allow the receiver to

estimate and correct the phase error in each OFDM symbol. This system seeks to

correct the phase errors caused by residual CFO, but does not actually estimate the

55

residual CFO itself.

However, we can use the same per-symbol phase error estimates to calculate the

residual CFO. The basic process for this is depicted in Figure 3.24. We can calculate

the frequency offset by taking the difference between the phase error estimates for

two OFDM symbols, then dividing by the length of time separating them. In the

presence of noisy phase estimates, some amount of averaging will be required to

realize a sufficiently accurate CFO estimate.

Ph
as

e
Er

ro
r

Time

T

θ

1 OFDM
Symbol

CFO ≈ θ

T

Figure 3.24 : Inferring CFO from phase error estimates calculated per OFDM symbol.

We consider three schemes for calculating the CFO based on the frequency domain

phase error estimates:

• Block Averages: calculate the slope of the phase errors over the span of the

final 8 or 16 OFDM symbols, and take the average of 8 or 16 of these estimates;

• Last Symbol: divide the phase error of just the final OFDM symbol by that

symbol’s time offset from the packet start;

• N Symbol MRC: divide the phase errors of the latter half of OFDM symbols

by their time offsets from the packet start, and combine the estimates via MRC,

weighting later estimates higher.

56

All three of these methods attempt to calculate the slope of the phase offset vs.

time curve, using different combinations of phase error estimates and time spans. We

evaluate these schemes in MATLAB via Monte Carlo simulations of a single-antenna

OFDM link. The simulation parameters (assignment of data and pilot subcarriers,

sampling rate, packet lengths, etc.) are matched to our hardware implementation.

Both AWGN and a frequency offset are applied between the simulated transmitter and

receiver. We test each scheme at a realistic residual CFO (305 Hz) at various SNRs

and for various packet durations. Packet durations are enumerated by the number of

OFDM symbols (even in hardware, every transmission consists of an integral number

of OFDM symbols). The actual payload length and modulation rates are irrelevant,

as the CFO estimates are based only on phase estimates derived from the pilot tones

present in every OFDM symbol.

The results of the simulations are shown in Figure 3.25. The X-axes are SNR for

the AWGN; the Y-axes are carrier frequency estimation error in Hz. The three plots

each show results for a different packet duration. The dotted and dashed lines show

the maximum tolerance for CFO estimation error if the payloads were modulated with

QPSK or 16-QAM. Notice that the error tolerance is lower for 16-QAM, and both

tolerances drop with increasing packet length. The packet lengths here are measured

in OFDM symbol periods.1

The four traces show results for each estimation scheme, measured as the standard

deviation of each estimator’s output (in every case, the mean estimates matched the

actual CFO). It is immediately clear that every scheme improves with increasing

1The packet duration for a given payload depends on the modulation rate. For example, a full
length payload (1500 bytes) modulated at QPSK occupies 125 OFDM symbols (12 bytes/symbol);
for 16-QAM, the same payload fills 63 symbols (24 bytes/symbol). Pilot tones are inserted in every
symbol, regardless of the payload modulation rate.

57

15 20 25 30

10
1

10
2

10
3

16 OFDM Symbols

E
st

im
at

e
E

rr
or

 (
H

z)

SNR (dB)

σ Blk Avg 8

σ Blk Avg 16

σ Last Sym

σ N/2 Syms MRC

Tolerance
(QPSK)

Tolerance
(16QAM)

15 20 25 30

10
1

10
2

10
3

64 OFDM Symbols

E
st

im
at

e
E

rr
or

 (
H

z)

SNR (dB)

15 20 25 30

10
1

10
2

10
3

128 OFDM Symbols

E
st

im
at

e
E

rr
or

 (
H

z)

SNR (dB)

Figure 3.25 : Performance of various frequency domain CFO estimation schemes vs.
SNR for various packet durations (durations are measured in OFDM symbols).

SNR. This makes sense, as the underlying pilot-derived phase error estimates will

degrade with higher noise levels. It is also clear the performance of the two block

averaging schemes are independent of packet duration. Again, this is expected, given

that these schemes use a fixed number of phase error values at the end of each packet,

for any packet duration. Finally, the final two schemes both show good performance

which improves with longer packets. These schemes also consistently perform better

than the required tolerances, showing improved performance with increasing packet

lengths in line with the tightening tolerances.

58

Perhaps most promising is the comparable performance of the two best schemes,

given their relative complexity. The (N/2)-MRC scheme performs best, as expected,

but is the most computationally complex option. The last-symbol-only scheme per-

forms almost as well, but is, by far, the least complex of all the schemes. From an

implementation perspective, the last-symbol-only scheme is very attractive, requiring

only the existing phase error estimator, plus a single multiplier and lookup table to

store normalization factors for each possible duration. As such, this is the scheme we

use in our hardware implementation.

280 290 300 310 320 330
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Frequency Offset Estimate (Hz)

P
ro

ba
bi

lit
y

Pilot CFO Estimate
(1 Hz bins, CFO = 305 Hz, 284726 Observations)

σ = 5.4 Hz

Figure 3.26 : Experimental distribution of frequency domain residual CFO estimates.

We evaluate our implementation of this estimator using the same hardware con-

figuration described in Section 3.5.2. In this test, the artificially induced CFO is

smaller (305 Hz) than when evaluating the time domain estimator, modeling a typ-

ical residual CFO that would remain after time domain CFO correction. The time

domain correction system is disabled, guaranteeing only the small offset propagates

59

into the receiver’s frequency domain pipeline. The resulting distribution of estimates

is shown in Figure 3.26. Just as with the time domain estimator, the distribution

of estimates here fits a normal curve centered at the actual offset. But notice the

standard deviation of just 5.4 Hz, far lower than with the time domain estimator’s

standard deviation of 209 Hz under comparable test conditions.

The estimator performance over a range of SNRs and packet lengths are shown in

Figures 3.27 and 3.28. In these plots the estimator performance is plotted as 2σ for

the distribution of estimates at each point; in every experiment, the mean estimate

matched the actual residual CFO. In both plots the Y-axes are frequency estimation

error in Hz. In Figure 3.27, the X-axis is analogous to SNR, parameterized here as

the attenuation (in dB) applied at the channel emulator output. Figure 3.28 plots

the same data but with an X-axis of packet duration, measured in OFDM symbols.

This plot also includes traces indicating the maximum tolerance for CFO estimation

error at each duration for packets modulated with QPSK and 16-QAM.

−38 −36 −34 −32 −30 −28 −26 −24 −22 −20 −18
0

50

100

150

200

250

300

350

Attenuation (dB)

F
re

qu
en

cy
 E

rr
or

 (
H

z)

Pilot Estimate Error (2σ) / Residiual CFO = 305 Hz

120 syms
100 syms
80 syms
60 syms
40 syms
20 syms

Figure 3.27 : Experimental performance of the frequency domain residual CFO esti-
mator vs. SNR for multiple packet durations.

60

20 40 60 80 100 120
0

200

400

600

800

Packet Length (syms)

F
re

qu
en

cy
 E

rr
or

 (
H

z)

Pilot Estimate Error (2σ) / Residiual CFO = 305 Hz

−38 dB
−34 dB
−30 dB
−26 dB
−22 dB
−18 dB
Tol QPSK
Tol 16QAM

Figure 3.28 : Experimental performance of the frequency domain residual CFO esti-
mator vs. packet duration for multiple SNRs.

This estimator performance meets our requirements, as judged in two ways. First,

for all cases except very low SNR, the estimation error falls well within the range

established earlier where source/relay CFO have minimal impact on performance (see

Figure 3.22). Second, remember that in a cooperative transmission, this estimator

will operate in the first slot while its estimate will be used in the second. The range

of estimation errors we observe is comparable to the expected frequency drift between

time slots (see Figure 3.19). Even if this estimator were perfect, inter-slot frequency

changes will have the same impact as estimation error.

Our design reduces the effects of inter-transmitter CFO in a cooperative link to

the same order as those caused by unavoidable inter-packet oscillator drift. This is

a pleasing balance. Our design requires a small increase in complexity of the relay

implementation but requires no extra overhead. This compares favorably with the

alternatives discussed in Section 3.7.2, which required substantial complexity increases

or huge increases in signaling overhead to mitigate dual CFOs in the receiver.

A thorough performance evaluation of a decode and forward relay employing our

61

CFO pre-correcting scheme is presented in Section 6.

3.8 Conclusions

As discussed in Section 1, mitigating CFO is one of the major challenges in building

a complete cooperative transceiver. We have presented the design and evaluation

of two CFO correction systems. The first corrects frequency offsets in the time do-

main at the receiver and is used for both non-cooperative and cooperative links. The

second operates at the relay, allowing simultaneous transmissions from cooperating

nodes to operate with a nearly identical carrier frequency. This technique allows

the destination to use its existing CFO compensation systems with no modification

for cooperative links. We have evaluated both systems in hardware, demonstrat-

ing performance which will facilitate cooperative communications in a wide range of

scenarios.

62

Chapter 4

Physical Layer Transceiver Design

A significant fraction of our overall effort focused on the FPGA implementation of

our OFDM transceiver. Our goal of a fully self-contained cooperative node requires

the transceiver implement complete real-time signal processing, synchronization and

control systems in the fabric of the WARP hardware’s FPGA.

We selected Xilinx System Generator [36] as the primary FPGA design tool for our

OFDM transceiver. System Generator enables graphical FPGA design entry using a

special blockset for Mathworks Simulink. Each block in the System Generator library

integrates a simulation model and an FPGA implementation. The simulation models

allow Simulink to execute a block diagram built with System Generator blocks exactly

as if it had been built using standard Simulink blocks. Once the designer is satisfied

with the simulation results, System Generator can produce an FPGA implementation

of the full model. This flow guarantees that the simulated and HDL designs will

operate identically, down to individual bits and clock cycles.

Although it enables graphical design entry, System Generator is still an FPGA

design tool which allows hardware architectures to be designed at the same level

of detail as with hand-coded HDL. Many blocks in the System Generator blockset,

such as flip-flops, multiplexers and bitwise logical operations, map directly to FPGA

primitives. Other blocks abstract common combinations of FPGA elements, such

as adders and ROMs, which are built using FPGA resources like lookup tables and

block RAMs. Only a few blocks provide higher levels of abstraction. We use two such

63

blocks: an FFT (implementing forward and reverse transforms) and a DDS (direct

digital synthesizer, for generating sinusoids). Aside from these two blocks, the entire

transceiver is implemented at the level of individual logical, arithmetic and memory

operations.

32-bit CRC Capt
1

crc_capt

d

rst

en

qz-1

crc_accum
d

rst

en

q z-1

and
z-0

xor
z-0

Logical 1

xor
z-0

z-1

0

Concat

hi

lo

CRC Remainders

addr

Assert

8MSB

[a:b]

24LSB

[a:b]

Capt
4

Rst
3

Vin
2

ByteIn
1

UFix _8_0

UFix _32_0

UFix _8_0

UFix _32_0

UFix _24_0

UFix _8_0
UFix _32_0

UFix _32_0

Bool

UFix _8_0

Bool

UFix _32_0

BoolBool
UFix _32_0

Bool

Accumulator
D Flip-Flop

ROMBitwise
XOR

Figure 4.1 : Example System Generator block digram, showing the CRC-32 calcula-
tion subsystem from our OFDM transmitter.

Figure 4.1 shows an example of a simple System Generator design. This block

diagram is the CRC-32 checksum calculation subsystem in our OFDM transmitter.

Each rectangular block is a System Generator primitive. A few blocks are labeled

(an accumulator, flip-flop, ROM, etc.) for clarity. The thin lines are wires which

connect ports of individual blocks. The bit widths of each wire are specified in the

configuration of each block’s outputs and are denoted by the small labels attached

to each wire. The ellipse-shaped terminals indicate ports which connect to other

subsystems higher in the design hierarchy. This is a snapshot of just one of the

hundreds of subsystems in the overall transceiver design, and demonstrates the level

at which every subsystem is designed.

64

4.1 Key Subsystems

A block digram of the overall transceiver architecture is shown in Figure 4.2. The

basic flow is straightforward. The transmitter starts with data from a packet buffer

and ends with samples output to the Radio Board DACs. The receiver does the

reverse, starting with samples from the radio ADCs and finishing with received data

written to a packet buffer.

ADCs

Symbol
Sync

CFO Estimaiton
& Correction FFT

Channel
Estimation

Phase
Correction

Alamouti
Combining Detection Packet

Reassembly

Auto-
Responders

Packet
DisassemblyModulationIFFTCFO Pre-

CorrectionScaling

Packet
Buffers

DACs Alamouti
Encoding

Figure 4.2 : Block diagram of the OFDM transmit and receive signal processing
pipelines.

Many of the blocks in between the radio and packet buffers are common to any

OFDM implementation. These blocks include digital modulation, the IFFT and

output filtering in the transmitter and input filtering, the FFT and channel estimation

in the receiver. These operations are are standard parts of any OFDM design and

lend themselves to straightforward implementation in an FPGA.

Some other blocks, however, pose unique implementation challenges. For example,

the carrier frequency offset estimation and correction systems described in Chapter 3

required careful design to accommodate both actual CFO (frequency differences be-

tween nodes) and transients in the instantaneous carrier frequency of a node itself.

The sections below discuss additional blocks with particular implementation chal-

lenges. Some of these challenges surface only in a cooperative system (the design of

65

the symbol timing correlator in Section 4.1.6, for example). Others are more general,

requiring careful implementation for both cooperative and non-cooperative links (the

efficient architecture for Alamouti encoding in Section 4.1.1, for example).

4.1.1 Alamouti Encoding

The Alamouti space-time block code (STBC) specifies an encoding process which

translates a sequence of modulated symbols into two spatial streams of encoded sym-

bols [18]. Every data symbol is included in both spatial streams. The encoding

process is shown in Table 4.1 for data symbols xn and symbol periods tn (x∗ is com-

plex conjugation).

t0 t1 t2 t3 ...
Stream A x0 −x∗1 x2 −x∗3 ...
Stream B x1 x∗0 x3 x∗2 ...

Table 4.1 : Alamouti STBC encoding

The code operates across pairs of symbols and symbol periods. In the first period,

unmodified data symbols are fed to each stream. The same symbols are used in the

second period but are swapped across streams and either conjugated or negated and

conjugated. This process repeats for every pair of data symbols to be transmitted.

In an Alamouti OFDM transmitter the STBC encoding process described above

must be applied in the frequency domain (before the IFFT) across full OFDM symbols

(i.e. the xn and tn above refer to OFDM symbols and symbol periods, respectively).

This requirement implies that every data symbol must be fed through an IFFT twice:

once unmodified (first symbol period), once conjugated/negated-conjugated (second

symbol period), as shown in Table 4.1.

66

This presents an implementation challenge. Our OFDM transmitter is designed

as a single long pipeline, operating continuously from when a transmission is initiated

until the last sample is output to the DACs. Specifically, payload bytes are unloaded

from the packet buffer individually, decomposed into groups of bits and translated

into modulated symbols. This process operates just-in-time, generating symbols and

feeding them immediately into the IFFT. This architecture minimizes latency by

avoiding buffering wherever possible.

Extending this architecture to support Alamouti encoding in the frequency domain

would require either buffering modulated symbols or adding support to “rewind” the

control logic to re-modulate the same payload bytes. Neither approach is appealing;

the former would consume substantial memory resources, the latter would signifi-

cantly complicate the design of the modulator.

We address this complication by moving the Alamouti encoding to the time do-

main. This is possible thanks to a useful Fourier property. If F−1(X[f]) = x[n] is

the inverse DFT of the frequency domain signal X[f], then F−1(X∗[f]) = x∗[−n]

(where ∗ is complex conjugation). In other words, the IFFT of the conjugate is equal

to the conjugate of the IFFT indexed in reverse.

The output of the IFFT is buffered in order to append a cyclic prefix to every

OFDM symbol before transmission. Our design buffers pairs of OFDM symbols xn

and xn+1. In the first symbol period, the symbols are read from the buffers in natural

order and fed to the rest of the transmit pipeline. In the second period, the symbols

are read in reverse order (realizing x[−n]). As the samples are unloaded either the

real or imaginary parts are alternately negated, realizing −x∗ and x∗, respectively.

The combination of reverse indexing and output negation completes the Alamouti

encoding process, generating exactly the same samples as if the process had been

67

implemented in the frequency domain.

Figure 4.3 depicts the addressing scheme described above as implemented in our

transmitter. The IFFT outputs for two OFDM symbols are written to the two buffers

(A and B). Each symbol is unloaded twice, once per stream, with cyclic prefixes

prepended.

63

x0[n]

x1[n]

x1[-n]

x2[n]

x3[n]

x0[-n] x2[-n]

x3[-n]

x0

x1

x2

x3

Buffer A

Write
Address

Read
Addresses

0

127

63

0

127

63

0

127

Buffer B

Cyclic
Prefix

Figure 4.3 : Addressing of OFDM transmitter time domain sample buffers imple-
menting frequency domain conjugation for Alamouti encoding.

4.1.2 Packet Buffers

At the core of our OFDM transceiver are separate signal processing pipelines for the

transmitter and receiver. These pipelines are designed to handle single packets. The

transmitter accepts a steady stream of bytes as an input, translating each into a

series of modulated symbols. At the end of its pipeline the receiver does the reverse,

assembling groups of demodulated symbols into a sequence of bytes, which are then

output from the core.

This view of the PHY design (stream of bytes in, stream of bytes out) is a good

way to design the signal processing pipelines, but it’s clear some kind of buffer is

68

necessary to have these byte streams be useful elsewhere in a system (e.g. to a higher

network layer). The obvious solution is a pair of packet buffers, one each for the

transmitter and receiver, which are mapped into the address space of the processor

executing the medium access control (MAC) protocol.

We used this dual-buffer architecture in early generations of the OFDM transceiver

design. It worked fine for debugging the PHY, but an issue arose when we began to

implement MAC designs. In many MAC protocols, a node may have two transmit

packet in-flight. In CSMA, for example, a node in timeout (having transmitted a

DATA packet but received no ACK) could receive a DATA packet for which it must

transmit an ACK. If there is a single transmit packet buffer, the original DATA packet

must be copied elsewhere (so the ACK can be created and sent), then copied back for

eventual re-transmission. All this packet shuffling takes time, of which there is little

to spare in meeting MAC timing constraints.

We considered the alternative of ping-pong buffering, which would use four buffers

(two each for transmit and receive). This would eliminate the contention between two

transmit packets. However, only a subset of MAC protocols would benefit. Specif-

ically, any protocol with more than two packets in flight, or one which re-transmits

received packets, would still need to shuffle packets among limited buffers.

We designed a packet buffering system which alleviates these issues. Our archi-

tecture, illustrated in Figure 4.4, is based on the observation that the PHY’s transmit

and receive pipelines only care about byte addresses relative to the start of a packet.

This design provides an array of 32 buffers, each 2 kB in size, all of which can be

accessed by both the transmit and receive pipelines. Each pipeline still provides just

byte addresses; these addresses are concatenated to a buffer index to construct an

actual memory address for the 64 kB RAM. There are separate buffer indices for

69

Read Addr

Tx Bytes

Rx Bytes

OFDM
Tx

OFDM
Rx

Tx Buf Index

Rx Buf Index

Processor Bus

Addr

DataIn

DataOut

64KB Dual
Port RAM

Port B
Port A

Addr

DataIn

DataOut

Tx

Rx

5

11
16

Write Addr

5

11

Figure 4.4 : Schematic of the OFDM transceiver packet buffer subsystem.

transmit and receive, both controlled via memory-mapped registers. The MAC soft-

ware can update these registers per packet, selecting the active transmit and receive

buffers as mandated by the MAC protocol

The abstraction provided by this design has proven very useful. Recall the example

of a CSMA node having both a timed-out DATA and an ACK packet to transmit. In

our design, each packet is stored in a dedicated buffer, never having to be re-located.

The MAC selects the packet to transmit with a single memory access (updating

the transmit buffer index register). Consider a multi-hop MAC, which re-transmits

received payloads. This can be realized in our design without having to ever copy

the packet payload. After receiving the packet, the MAC simply swaps the Tx/Rx

buffer indices, then initiates the PHY transmission. The latency reduction here proves

critical in a cooperative system, where a decode-and-forward relay implements exactly

this sequence of operations. In extending the transceiver to support cooperative

modes we reduce this latency further by automating the buffer index switching in

70

hardware via an auto-response subsystem (see Section 4.2).

A final component of this design is mapping the whole 64 kB memory block into

the address space of the MAC processor. This allows MAC code to access any packet

(header and payload) and communicate packets via Ethernet (also attached to the

MAC processor’s memory bus). The block memory primitives in the FPGA provide

two independent ports, both with read/write access to the full memory. This suits

our architecture perfectly; one port is attached to the processor bus, the other to glue

logic in the PHY which multiplexes between the address generators in the transmit

and receive pipelines.

4.1.3 Frame Format

Our frame format is loosely based on that of IEEE 802.11a. The basic format is

illustrated in Figure 4.5 and is discussed below.

STS LTS TrA HeaderTrB

Preamble Channel Training
Symbols

Alamouti-encoded
OFDM Symbols

Payload

≈Samples: 160 160 80 80 160 0…10,000

Fields:

Figure 4.5 : Field descriptions and durations for OFDM frames.

Preamble: The preamble is a hard-coded 320-sample sequence pre-pended to every

packet transmission. The preamble consists of two 160-sample sections. The first is a

repetition of 10 16-sample sequences, called short training symbols (STS). The STS

facilitate RSSI-based energy detection, AGC convergence and DC offset correction.

The second half is 2.5 repetitions of a 64-sample sequence, called the long training

symbol (LTS). The LTS are used for carrier frequency offset estimation and symbol

71

timing estimation.

For 2×1 Alamouti and cooperative transmissions, both spatial streams transmit a

full preamble. The antenna or node sending stream B cyclicly shifts the STS and LTS

sections by three samples. This shift helps avoid unintentional destructive interfer-

ence of the preamble waveforms at the receiver. This design for overlapping preamble

transmissions has consequences for the packet timing correlator; this is discussed in

Section 4.1.6.

Channel Training: Following the preamble are the channel training symbols. These

are full OFDM symbols, filled with a hard-coded sequence of BPSK modulated sym-

bols. The receiver uses the training symbols to calculate a channel estimate for each

subcarrier.

In Alamouti mode every packet has two training symbols, one per spatial stream.

Each stream transmits one training symbol and transmits nothing during the other

training symbol period (i.e. we orthogonalize training in time). The transceiver

design supports an arbitrary number of training symbols per packet. The receiver

calculates the average of all symbols transmitted for a given stream. The number of

symbols is configured at run time in software, but every node in a network must use

the same configuration.

Header: The first data-bearing symbols convey the packet header. These symbols

are filled with data modulated with BPSK or QPSK. Every node in the network must

agree a-priori (i.e. at compile time) on the header length and modulation rate. The

receiver uses two fields in the header during reception: payload length and payload

modulation rate. The rest of the header is available for use by the MAC. The final

72

16 bits of the header are a checksum which allows the receiver to confirm an error-

free header before using the modulation and length fields to process the payload that

follows. The checksum is calculated in hardware by the transmitter and inserted au-

tomatically.

Payload: The rest of the packet is dedicated to payload symbols. The duration of

this section depends on the payload length and modulation rate, both configurable

per-packet by the MAC. The transceiver design supports arbitrarily long packets; in

practice, we are usually limited to 1500 bytes (an Ethernet MTU).

-32 +310

Unu
se

d (
12

)

Data
 (4

8)

Pilot
s (

4)

-7-21 7 21

Figure 4.6 : Mapping of data symbols and pilot tones across subcarriers.

Our OFDM design divides the 10 MHz bandwidth into 64 subcarriers and supports

any mapping of modulation rates to subcarriers, requiring only that the DC subcarrier

be empty and that four subcarriers be allocated for pilot tones. We generally use

the same subcarrier mapping as IEEE 802.11 a/g. This mapping dedicates four

subcarriers for use as pilot tones to provide the receiver phase error estimates with

every OFDM symbol. It also leaves 12 subcarriers empty, composed of the DC and

11 highest frequency subcarriers.

73

4.1.4 Energy Detector

In a random access network each node must always be ready to receive a packet from

any other node. When node is idle (not transmitting or processing a reception), it

must be monitoring its RF receiver in search of new receptions. These receptions may

come from nearby nodes, resulting in reception of a very strong RF signal (up to -15

dBm). They may also come from distant nodes, delivering only a weak signal (below

-75 dBm, for example).

In the search for signals over this wide range of received power levels, we use

a feature of the MAX2829 RF transceiver called received signal strength indicator

(RSSI).

The MAX2829 receive path implements an RF power detector with an analog RSSI

output. The analog signal is proportional to the log of the instantaneous received

power in a ≈6 MHz band around the radio’s current center frequency. This propor-

tionality is maintained over the full range of possible receive powers (≈[-85,-15] dBm).

The RSSI signal is fed to a dedicated ADC on the WARP Radio board, which provides

a 10-bit RSSI sample every 100 ns for use by the physical layer receiver.

Our OFDM receiver uses this digital RSSI to calculate a 16-sample average for

use in energy detection. This subsystem declares an energy detection event when

the average RSSI exceeds a threshold for a minimum duration. Both the threshold

and duration are programmable at runtime. The minimum duration requirement is

designed to reject short-lived energy events, like interference from frequency hopping

devices. The average calculation and threshold checking are executed in hardware

with every new RSSI sample. An energy detection event advances the OFDM re-

ceiver’s state machine to begin searching for the structure of an actual packet, as

described below.

74

4.1.5 Receiver State Machine

The OFDM receiver implements a state machine which updates with every clock

cycle. The receiver progresses through the states with every packet reception. The

state machine is illustrated in Figure 4.7 and described below.

Energy
Detection1

Preamble
Correlation2

Header
Checksum3

Payload
Checksum

Bad Header

Calculate
Average RSSI

Bad Payload

Good Payload

4

Pass

Fail

Pass

Fail

Pass

Fail

Pass

Fail

Wait for MAC

Reset

Figure 4.7 : OFDM receiver flow chart

1. Every clock cycle, the energy detector updates its running average of RSSI

samples and compares the average against the thresholds for minimum energy

duration and level.

2. After an energy detection event occurs, the OFDM receiver begins monitoring

the output of a cross-correlator (discussed in Section 4.1.6), searching for the

75

long training symbols in the latter half of each packet’s preamble. If the cor-

relation exceeds a programmable threshold within a fixed window (defined by

the known duration of the preamble), the receiver continues processing the in-

coming packet. Otherwise the receiver resets and once again begins monitoring

the RSSI.

3. If the correlator indicates a valid preamble, the OFDM receiver begins taking

FFTs of the incoming sample stream, starting with a sample offset indicated by

the timing of the correlation event. The FFT outputs are fed into the channel

estimator, equalizer and detector, which attempt to decode the packet’s header

using the header’s 16-bit checksum to detect errors. If an error is detected,

the receiver raises a Bad Header event and halts until the event is cleared by

the MAC. Otherwise a Good Header event is raised and the PHY proceeds

processing the packet payload (if the packet has one). The modulation rate

and length of the payload are defined per-packet by fields in the header. For

header-only packets (zero payload length), the PHY halts with either event until

cleared by the MAC.

4. For packets with payloads, the receiver continues processing until the final pay-

load byte is detected. Then the receiver uses the packet’s 32-bit checksum to

detect errors. If no errors are detected, the PHY raises a Good Payload event.

Otherwise it raises a Bad Payload event. The receiver remains halted until

the MAC handles either event.

76

4.1.6 Packet Timing Correlator

The RSSI-based packet detector provides a very coarse estimate of packet timing.

Depending on the power of a received packet, the energy detector can assert anywhere

in a 50 sample window. This uncertainty must be reduced before samples are fed into

the receiver’s FFT. This process is sometimes called block boundary detection or

symbol timing estimation.

The goal is to identify the last sample of the preamble in order to establish timing

for the OFDM symbols which will input to the FFT. We accomplish this performing

cross-correlation against the long training symbols (LTS) in the packet preamble. We

use the same LTS as in the IEEE 802.11a standard. This sequence is designed to have

very good auto-correlation properties. The LTS is defined as 64 complex samples;

the magnitude of the sequence’s auto-correlation is shown in Figure 4.8. Note that

the prominent spike is exactly one sample wide.

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

Figure 4.8 : Auto-correlation of the preamble’s long training symbol (LTS).

Our OFDM receiver computes a 64-point cross-correlation in every sample period,

77

searching for peaks corresponding to the arrival of a valid preamble. As both argu-

ments to this correlation (input samples and local copy of an LTS) are complex valued,

this is a resource-intensive computation. If calculated at full precision, it would re-

quire hundreds of multiplications and additions per clock cycle. These requirements

exceed the resources we can dedicate to the correlator. Instead, we use quantized

versions of the input samples and stored LTS to reduce the resource requirements.

The architecture for this quantized correlator was originally created by Dr. Chris

Dick at Xilinx and was integrated into our OFDM transceiver prior to our cooperative

extensions. The original design used 1-bit quantization for both the input samples

and stored LTS, effectively comparing the signs of the two 64-length complex vectors.1

This architecture replaces each multiplication with a much simpler addition/subtrac-

tion operation, significantly reducing the resource requirements in hardware. It is

counter-intuitive that a 1-bit×1-bit correlation would provide sufficient precision to

retain the good correlation properties of the LTS. But, as illustrated in Figure 4.9,

this approach works remarkably well. These figures show the correlator output when

a full preamble (10 STS plus 2.5 LTS) is input for both a full-precision simulation

and the 1-bit version. The single-sample spikes corresponding to the preamble’s two

LTS are prominent in both plots. A slightly higher “noise floor” is present in the

quantized version, as expected.

This architecture provides two key benefits:

• Low complexity: replacing each multiplication with addition/subtraction en-

ables a very efficient implementation. The full correlator (64-point complex

cross correlation) occupies less than 1% of the logic in the WARP hardware’s

1Technically two bits are required to encode ±1 in two’s complement fixed point notation; how-
ever, the correlator architecture forces input samples to either -1 or +1, even if represented as two-bit
integers

78

V2P70 FPGA. A full precision implementation would consume far more (256

of the 320 available multipliers, for example).

• Amplitude independence: by quantizing the received samples to ±1, the height

of the correlator’s peaks are independent of the received signal amplitude. This

allows use of a simple static threshold for all received powers, a much more

efficient approach than adjusting the threshold on the fly.

0

0.2

0.4

0.6

0.8

1

Full Precision

C
or

re
la

tio
n

(a) Full Precision

0

0.2

0.4

0.6

0.8

1

Quantized − 1 bit x 1 bit

C
or

re
la

tio
n

(b) 1-bit×1-bit

Figure 4.9 : Packet timing correlator output for full preamble, comparing full precision
calculation (a) to 1-bit×1-bit quantized version (b).

Correlation for Cooperative Transmissions

The discussion above presents the design of the correlator used in our OFDM

receiver to establish symbol timing. This correlator was designed for SISO systems

and performs well in this application. However, a challenge arises when employing

this correlator for symbol synchronization in a cooperative receiver.

Figure 4.10 illustrates the frame format for cooperative transmissions in our imple-

mentation. The components of each transmission are those discussed in Section 4.1.3

above. Notice that both nodes transmit full preambles simultaneously (though stream

B’s preamble is cyclicly shifted by 3 samples to avoid destructive combining).

79

STS LTS TrA Header Payload

≈
STS LTS HeaderTrB Payload

≈Stream A:

Stream B:

Figure 4.10 : Frame format for cooperative transmissions, where two nodes each
transmit one of the streams simultaneously.

Ideally, the LTS would have perfect auto-correlation properties (zero correlation

for non-zero offsets) and our correlator would operate at full precision. This would

allow the best possible recovery of high spikes from the cross-correlation even when

superimposed preambles (with some relative delay) are received. Of course, neither

the LTS signal design nor correlator implementation are ideal. As a result, the best-

case correlation values will decrease in the overlapping preamble cases.

Figure 4.11 illustrates this effect, comparing the output of a full precision corre-

lator (a) and the 1-bit quantized version (b). The inset in (b) highlights the four

correlation peaks, with neighboring peaks separated by three samples, correspond-

ing to the cyclic shift discussed in Section 4.1.3. Note the significant degradation

in the peak magnitudes, relative to Figure 4.9(b) (the figures use the same axes).

This reduction constrains the selection of the correlation threshold, increasing the

probability of errors during symbol timing estimation.

In our early experiments, we identified the degradation of these peaks as a domi-

nant source of errors at high SNR. A full precision correlator would improve this, but

we recognize a full precision implementation is infeasible. We address this challenge

by slightly increasing the precision with which the correlator stores its copy of the

LTS.

Our new design uses 3 bits per stored coefficient (verses 1 bit in the original

80

0

0.2

0.4

0.6

0.8

1

Full Precision
C

or
re

la
tio

n

(a) Full frecision

0

0.2

0.4

0.6

0.8

1

Quantized − 1 bit x 1 bit

C
or

re
la

tio
n

0

0.05

0.1

0.15

0.2

0.25

Quantized − 1 bit x 1 bit

C
or

re
la

tio
n

(b) 1-bit×1-bit

Figure 4.11 : Output of full precision (a) and 1-bit×1-bit (b) correlators when pro-
cessing overlapping preambles for 2×1 or cooperative transmission.

architecture). The new design still quantizes received samples to ±1, preserving

the multiplier-free architecture and correlation values independent of received power.

The results for the 1-bit×3-bit correlator are shown in Figure 4.12, illustrating the

correlator outputs for both a single transmission and two simultaneous transmissions

(e.g. 2×1 or cooperative). The updated correlator design significantly improves the

peak correlation values, nearly matching those achieved with a full-precision version.

We chose 3 bits for the stored LTS coefficients to balance the correlator performance

with resource usage; the updated design consumes ≈3% of the logic in the V2P70

FPGA.

We can further illustrate the impact of the higher precision correlator with the

experimental results shown in Figure 4.13. These traces show the probability of error

during packet timing estimation for both a non-cooperative and AF link using the

original (1-bit×1-bit) and updated (1-bit×3-bit) correlators. This experiment models

a cooperative topology with co-located source and relay nodes, with the destination

node placed at various distances. There is a dramatic improvement in error perfor-

81

0

0.2

0.4

0.6

0.8

1

Quantized − 1 bit x 3 bit
C

or
re

la
tio

n

(a) One transmission

0

0.2

0.4

0.6

0.8

1

Quantized − 1 bit x 3 bit

C
or

re
la

tio
n

(b) Two transmissions

Figure 4.12 : Output of 3-bit×1-bit correlator for a single transmission (a) and two
transmissions (b).

mance using the higher-precision correlator, reducing the error rate for the highest

SNR data points by nearly 100×. These curves are produced using the experimental

methodologies discussed in Section 5.

−35 −30 −25 −20 −15 −10 −5 0
10

−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation (dB)

P
ro

ba
bi

lit
y

NC
AF

(a) 1-bit correlator

−35 −30 −25 −20 −15 −10 −5 0
10

−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation (dB)

NC
AF

(b) 3-bit correlator

Figure 4.13 : Experimental results for probability of error during packet timing es-
timation for non-cooperative (NC) and amplify-and-forward (AF) links, using the
original 1-bit×1-bit (a) and new 1-bit×3-bit (b) correlators.

82

4.1.7 Waveform Buffer

As discussed in Chapter 2, amplify and forward (AF) relays operate by storing the

raw samples corresponding to a received packet, then re-transmitting those samples

without any modification. A baseband AF implementation must therefore dedicate

a buffer large enough to store all the complex samples for a maximum-length packet.

Our design implements this buffer using memory in the FPGA.

The memory block is constructed as a circular buffer which records I/Q samples

input to the receiver at all times except when the receiver is blocked waiting for

the MAC (i.e. after completing reception of a packet). The buffer captures I/Q

samples at 10 MHz in the receive pipeline before any time domain processing is

applied; capturing the samples before time domain CFO correction is applied is key,

as explained in Section 3.7.3.

The buffer’s addressing logic also has an input tied to the correlator in the symbol

synchronization system discussed in Section 4.1.6. When the correlator flags the

last sample of the incoming preamble, the waveform buffer records its current write

address. This address is used to calculate the address of the first sample to be

transmitted (when an AF transmission is triggered), by subtracting the length of the

preamble.

The outputs of the I/Q buffers are routed to the final stages of the OFDM trans-

mitter pipeline. Here the waveform is interpolated by four to match the sampling

rate of the DACs. The filter outputs are then scaled to fill the dynamic range of the

DACs. The AF waveform uses the same filters and scaling blocks employed for locally

generated transmissions.

In our current implementation the waveform buffer can store 32k samples, more

than enough to realize AF for all packet durations we use in our experiments. The

83

buffer consumes 52 (of 320) BRAMs in the FPGA.

4.2 Auto-Response System

As discussed in Chapter 1, one of the primary goals of our design is to enable co-

operation in random-access networks. A core challenge imposed by this goal is the

requirement that nodes be able to trigger cooperative transmissions in response to

receiving data or control packets from other nodes in the network. This requirement

imposes very strict synchronization tolerances on the latency between receiving a

wireless packet and transmitting one in response.

This Rx→Tx turnaround is analogous to the SIFS interval in the IEEE 802.11

specifications (SIFS is the minimum inter-packet time in 802.11, occurring between

DATA-ACK and RTS-CTS transmissions, for example). Before extending our OFDM

transceiver to support cooperation, our primary goal was minimizing this interval,

recognizing the Rx→Tx turnaround is guaranteed idle time (i.e. pure overhead). We

eventually reduced it to just 24 µs, nearly matching the very short SIFS interval in

802.11a (19 µs).

In our original design all packet transmissions were initiated by the MAC software

running in the FPGA’s PowerPC core. During a reception the MAC code would

continuously poll the OFDM receiver’s registers waiting for either a Good Payload or

Bad Payload event. Depending on the protocol implementation the MAC code could

respond to these events by transmitting a packet in response (i.e. sending an ACK

after receiving a good DATA packet). This software-driven approach worked well for

many iterations on the OFDM design for both SISO and MIMO applications.

84

4.2.1 Rx→Tx Turnaround in a Cooperative System

A cooperative system, however, poses a new challenge. In a random access coopera-

tive network two nodes (source and relay) may need to simultaneously initiate trans-

missions in response to a packet reception. Ideally the nodes’ Rx→Tx turnaround

intervals would be exactly the same. In practice, however, there will always be some

difference. Recall from Chapter 2 that we chose OFDM as the underlying physical

layer for our system in part due to its tolerance for small differences between the

timing of source and relay transmissions. This tolerance is provided by the guard

interval (cyclic prefix) appended to every OFDM symbol (overlapping transmissions

with slight timing differences are modeled as multipath components). The guard in-

terval in OFDM is actually intended to protect against actual multipath fading. Thus,

larger source/relay timing offsets reduce the receiver’s actual tolerance for multipath

fading.

The 24 µs latency stated above (for the software-driven Rx→Tx turnaround) is

actually a mean value. We measured this latency in real-time and observed values

±0.8 µs around this mean. This 1.6 µs window is a significant problem for a coop-

erative system, as it is equal to the full duration of the guard interval (cyclic prefix)

appended to each OFDM symbol in our PHY design. With this level of variation

in the timing of source and relay transmissions, the full cyclic prefix would be ded-

icated to synchronization tolerance, leaving none for mitigating actual multipath in

the propagation environment.

To address this challenge, we conceived and implemented a new subsystem in the

OFDM transceiver which manages all Tx-Rx and Rx-Tx transitions in FPGA logic,

instead of in software. This subsystem has two major functions. First, it controls

the pins which enable the transmit and receive paths through the WARP hardware’s

85

radio transceiver. Second, it contains logic which can automatically initiate a packet

transmission in response to a packet reception. The conditions for triggering the

transmission and the contents of the response packet are programmed by the MAC

software and can be changed on per-packet time scales. This subsystem essentially

functions as a MAC “accelerator,” allowing protocol behaviors to be specified in

C code but executed by dedicated hardware resources. The resulting turnarounds

are both fast (to minimize overhead) and deterministic (to align behaviors among

distributed nodes). The flexibility of this subsystem is motivated by our goal of

building a transceiver which allows exploration of various protocols for triggering

physical layer cooperation without having to design a custom PHY for each one.

This auto-response subsystem, depicted in Figure 4.14, is composed of three major

components: header match units, actors and the header translator. Each of these is

discussed in detail below.

Match UnitsMatch UnitsMatch UnitsReceived Header

Received Status
ActorsActorsActors

Tx Options

Automatic Tx

Set Flags

FlagsFlags

Figure 4.14 : Block diagram of OFDM receiver’s auto-responder subsystem.

4.2.2 Header Match Units

The auto response match units search for user-specified patterns in received headers.

There are six match units in the current transceiver, each of which is configured

independently from user code.

86

Each match unit searches for a sequence of one, two or three bytes starting at

some offset in every received header. The search values and offset are configured from

user code and can be updated at runtime. Multiple match units can be used together

to search for longer sequences. Common examples of match values include searching

for a particular packet type (i.e. DATA) or destination address (i.e. matching the

node’s own address).

4.2.3 Actions

When packet receptions meet the programmed conditions, each actor implements

an action customized by options. Each of these aspects are discussed below. The

current transceiver implements six independent actors whose behaviors are configured

from user code.

Actions:

• Do nothing: disables the specified actor; this is the default state at boot.

• Set Flags A/B: asserts the value of either Flag A or B. The flag values are

available to other actors as a condition for their own actions. Each flag is

automatically cleared by the next packet reception (unless another actor re-

asserts it). The flags allow actors to transmit in response to a sequence of two

receptions (i.e. the first sets the flag, the second initiates the transmission,

conditioned on the flag’s state).

• Transmit a packet: the primary role of an actor is to initiate an automatic

transmission in response to a reception meeting its programmed conditions.

The available conditions and options for automatic transmissions are discussed

below.

87

Conditions:

• Match Units: Requires that some combination of match units declare a match

of their programmed search pattern in the received packet header. Any combi-

nation of the six match units can be required.

• Good Header: Requires reception of an error-free header, based on its 16-bit

checksum.

• Good Payload: Requires reception of an error-free header and payload, based

on the packet’s 32-bit checksum.

• Bad Payload: Requires reception of an error-free header but payload with

error.

• Flags: Requires Flag A or B be asserted (flags are asserted by an actor in the

previous packet reception).

Transmit Options: When an actor is configured to transmit, its behavior is con-

trolled by a number of parameters. Each parameter is configured independently per

actor and can be changed on the fly from software.

• Transmit packet buffer: Selects the index of the packet to transmit. Values

of 1-30 select that packet buffer for transmission. A value of 31 selects the

amplify-and-forward (AF) waveform buffer for transmission.

• Use header translation: Controls whether the header translator (described

below) is used for the automatic transmission. This is ignored for AF transmis-

sions.

88

• Use CFO pre-correction: Controls whether CFO pre-correction is applied for

the automatic transmission (see Section 3.7.4). The CFO pre-correction value

for the selected packet buffer is automatically accessed by the transmitter.

• Swap spatial stream: Controls which spatial stream (A or B) is transmitted

from the active antenna. Enabling this option swaps whatever stream-antenna

assignment is configured by default in software; the original assignment is re-

stored after the automatic transmission.

• Transmit delay: Sets the delay in sample periods between the end of the

packet reception and the beginning of the automatic transmission.

4.2.4 Header Translation

The header translator, illustrated in Figure 4.15, is used to construct the header

of an automatically transmitted packet using fields from the header of the received

packet which triggered the transmission. This allows auto-transmitted packets to

use values from received headers without having to access them from software before

transmission. For every header byte of an automatically transmitted packet, the user

can configure the packet buffer and byte indices of the byte that should be substituted.

Read Addr
Packet Buffers

Header
TranslatorHeader?OFDM

Tx

Byte to Transmit

Figure 4.15 : Block diagram of OFDM transmitter’s header translation subsystem.

A simple example is the transmission of an ACK in response to a received DATA

89

packet. At boot, the user code creates an ACK template, filled with the correct header

fields for source address and packet type. The destination address and sequence

number fields are left empty in the template. Then when a DATA packet is received,

an auto-responder actor is configured to transmit the packet buffer containing the

ACK template. During transmission, when the PHY reads the bytes corresponding

to the destination address and sequence number fields, the header translation logic

re-directs the memory access to the corresponding fields in the received DATA packet.

This operation is totally transparent; it does not affect the ACK template, allowing

it to be used for all automatic ACK transmissions without further modifications.

4.2.5 Timing

The auto-response subsystem is our solution to the need for deterministic timing

between packet events in a network of random-access cooperative nodes. By imple-

menting this functionality in the FPGA fabric, the latency for an Rx→Tx turnaround

is a fixed number of clock cycles every time. Two nodes which receive the same packet

and are programmed to transmit a response will do so nearly simultaneously, with

a maximum timing difference of just one sample period. This one sample period

window is due to sampling frequency offset, as each node uses an independent oscil-

lator for generating its sampling clock. Every node synchronizes its receiver to an

incoming waveform via the correlator discussed in Section 4.1.6. Once synchronized,

the receiver will operate for a fixed number of clock cycles (determined by the pay-

load length and modulation rate). Thus, for the same received waveform, two nodes

will finish reception within one sample period, the maximum phase offset between

sampling clocks.

The timing of transmissions from two nodes using the auto-response system is

90

illustrated in Figure 4.16. This figure is a screenshot of an oscilloscope monitoring

two digital signals indicating the initiation of transmissions from two WARP nodes.

The scope displays a history of many transmit events and is triggered by the Relay

Tx signal (hence its assertion being drawn at the same point every time). The Source

Tx signal always occurs within a ±1 sample (±100 ns) window around the relay

transmission.

Source Tx

Relay Tx

200ns

Figure 4.16 : Relative start times of two automatic transmissions from cooperating
nodes, triggered by independent receptions of the same packet.

4.3 Designing for Characterization

In a typical depiction of a wireless networking stack, the physical layer transceiver

exposes very little about its internal state to higher layers. The MAC layer, for ex-

ample, is concerned primarily with the PHY’s basic activity (currently transmitting

or receiving) and the outcome of any reception (passing or failing checksums). This

level of information is sufficient for evaluating the PHY’s performance with aggre-

gate metrics like packet error rate (PER). However, it does not provide the visibility

needed to evaluate individual PHY subsystems. Our work requires this per-subsystem

evaluation. As a result, our physical layer design includes a number of extra blocks

dedicated for use in characterizing various aspects of the transceiver’s performance.

91

These blocks are designed to expose internal state without affecting the operation

of the PHY. A few of these designed-for-characterization subsystems are discussed

below.

4.3.1 Carrier Frequency Offset

As discussed in Chapter 3, a significant fraction of our effort is directed at under-

standing the behavior of carrier frequency offsets and investigating ways to mitigate

them. Frequency offsets are usually uncontrollable, bounded only to some range by

the specifications of the reference oscillators in hardware. To characterize CFO es-

timation performance, however, we need to control carrier frequency offset as the

independent variable. We achieve this using extra logic in the OFDM transmitter

which can apply arbitrary frequency offsets to its transmissions, with the offset itself

controlled at run-time. This is a counter-intuitive extension; CFO is something best

avoided, not intentionally induced. However, by sharing clocks between nodes (estab-

lishing zero CFO by default), then applying known frequency shifts, we can precisely

control the CFO and use it as a parameter in our characterization.

4.3.2 Packet Detection

Our OFDM receiver detects packets in two stages: energy detection (Section 4.1.4)

and symbol timing estimation (Section 4.1.6). These subsystems operate continu-

ously, seeking to detect and establish sample-level synchronization with incoming

packets. However, in order to characterize the transceiver’s performance, we need to

extend these subsystems in two ways.

In normal operation the energy detection block is responsible for the first detection

of an incoming packet and, upon detection, advances the receiver state machine. In

92

order to characterize the performance of the receiver independently from that of the

energy detector, we add an external input which mimics the energy detector output.

This signal is connected to a top-level FPGA port, itself connected to a pin on the

WARP FGPA Board. Driving this pin high “tricks” the receiver into behaving exactly

as if the energy detector has asserted. We connect this top-level input to a compatible

pin on the transmitting node, thereby establishing “perfect” energy detection.

The energy detector provides a second pin with the opposite effect. When asserted,

this signal disables the energy detector output, allowing one node to force another

to ignore a given transmission. This feature is critical in our characterization of

cooperative schemes, allowing us to constrain the destination to operate only in the

second time slot of each transmission.

4.3.3 Random Payload Generation

Our OFDM transmitter design includes a random payload generator. This block

produces a sequence of pseudo-random bytes (generated by a 12-bit LFSR) which

are fed into the pipeline in place of the transmit buffer contents. We use this block

in experiments seeking to characterize the PHY performance independent of any

MAC. Generating the payloads internally adds no latency to a transmission. Creating

payloads in logic also avoids having to generate payloads in software for every packet,

reducing the latency between transmissions.

Randomly generating payloads creates a challenge when conducting bit-error rate

(BER) tests. In order to calculate a BER, the transmitted and received packets

must be compared. We use a custom application running on a PC to perform this

comparison. The PC is connected to the WARPnet Ethernet network, and requires

both nodes to send via Ethernet every wireless packet transmitted or received. This is

93

easy at the receiver, as incoming packets are always written to a packet buffer. In the

transmitter, our payload generator includes logic which writes the random bytes to a

packet buffer during transmission (reversing the usual role of the transmitter reading

packet buffers). Following the transmission, the full packet is sent via Ethernet for

BER analysis.

4.3.4 Per-Packet Measurements

In the course of processing a packet our OFDM receiver calculates a number of pa-

rameters for use in the processing pipeline. Some of these parameters are also useful

for debugging and characterization, but only if they can be recorded by the receiver

for offline analysis. A few examples are discussed below.

CFO estimates: The receiver’s carrier frequency offset estimators provide values

used elsewhere in the transceiver. The time domain estimator feeds the correction

system before the receiver’s FFT. The frequency domain estimator feeds the CFO pre-

correction system employed by the relay for DF transmissions. While these values are

used internally, exposing the estimates to software is necessary for characterization.

Our receiver records both estimates to memory-mapped registers, whose values are

included in packets transmitted via WARPnet for offline analysis.

Channel estimates: As with CFO the channel estimator generates values used in-

ternally by the receiver pipeline. In parallel with this pipeline, our receiver design

records the channel estimates generated with every packet reception in a memory-

mapped buffer. This allows the estimates to be included in WARPnet packets for

offline analysis. By exposing the estimates, we are able to associate particular chan-

94

nel characteristics with reception outcomes. It turns out this association is key to

understanding some of our experimental results, as discussed in Section 6.5.2.

Transceiver state: The OFDM receiver is controlled by its own state machine which

does not report internal state to user code until a reception is complete (at which

point it reports good/bad header/payload). However, knowing the internal state

of the receiver in real-time is immensely useful for debugging both MAC and PHY

behaviors. Our receiver design includes a number of top-level outputs tied to internal

state variables. These outputs are tied to pins on the FPGA board which can be

probed with an oscilloscope in real-time.

Source Tx

Relay Tx

Destination Tx

Destination
Good Rx

1.06ms

DATA

ACK NACK

80µs

ACK

Figure 4.17 : Example observation of MAC and PHY behaviors, captured by observ-
ing state signals from multiple nodes in real-time on an oscilloscope.

This led to an unexpected observation about the utility of an oscilloscope for

debugging MAC behaviors in real-time. By capturing the transmitter and receiver

states at multiple nodes simultaneously (via a multi-channel scope), we can directly

observe complicated state transitions and the stimuli that cause them, all in real-time.

An example of this is shown in Figure 4.17, which illustrates two packet exchanges,

DATA-ACK and DATA-NACK-DATA, among three nodes in a cooperative network

(running the DOC protocol discussed in Section 7.1.1). Observing these signals does

95

not affect the PHY behavior in any way; the FPGA is able route copies of the internal

state signals without altering the state machine itself. The WARP FPGA board

provides 16 flexible I/O which can be assigned to monitor any internal FPGA signal.

96

Chapter 5

Experimental Methodologies and Metrics

As discussed in Chapter 1 two of our primary goals are the design of a cooperative

physical layer transceiver (presented in Chapters 3 and 4) and a thorough evaluation

of the transceiver under a variety of conditions (presented and discussed in Chapter 6).

Connecting these goals is the need for experimental methodologies and experimental

parameter selection to measure the performance of our transceiver implementation.

Addressing these requirements poses significant design challenges. For example,

any cooperative experiment requires coordination of three nodes, acting as source,

relay and destination. The experiment must account for every source transmission,

relay reception, relay transmission and destination reception, and the conditions un-

der which each takes place. Further complicating the experimental requirements is

the need to control the wireless propagation environment. We need to test a variety

of SNRs and fading conditions and must do so reliably and repeatably.

The sections below discuss our solutions to these challenges.

5.1 Node Design

The OFDM transceiver is just part of our overall FPGA design. We use the design

flow developed for the WARP OFDM Reference Design [37] to integrate the PHY

model with the cores and code required to realize an autonomous wireless node on

WARP. A block diagram of the overall design is shown in Figure 5.1. The top blocks

97

(group 1) represent the C code which executes in the FPGA’s PowerPC core. This

code includes both the high-level node behaviors (a MAC protocol, for example) and

low-level code which configures the PHY and other cores (analogous to drivers). The

middle blocks (group 2) represent the actual FPGA cores, including the OFDM PHY,

packet buffers, Ethernet MAC and the radio controller. These cores are realized in the

FPGA fabric and are connected to a common bus (PLB) mastered by the PowerPC

core. The bottom blocks (group 3), the radio and Ethernet transceivers, represent

peripherals on the WARP hardware itself.

Timer Ethernet
MAC

PLB

Packet
Buffers

Radio
Controller

Custom
PHY

OFDM
Transmitter

Radio
Bridges

Packet
DetectorAGCOFDM

Receiver

PHY
Driver

Timer
Driver

Ethernet
MAC Driver

MAC Research Application

WARPMACWARPPHY

Misc.
Drivers

DMA
Driver

Digital
I/Q

Digital
I/Q

I/Q &
RSSI RSSI

Control

Radios Ethernet

1

FPGA Logic

Hardware

PPC Code

2

3

Figure 5.1 : Block diagram of the overall FPGA design for our implementation on
WARP, consisting of C code for the FPGA’s PowerPC (1), custom logic designs in
the FPGA fabric (2) and key peripherals on the WARP hardware itself (3).

The logic designs, C code and hardware interfaces are all integrated via Xilinx

Platform Studio (XPS), which serves as a front-end for both the logic synthesis flow

(Xilinx ISE) and software compilation flow (built around a GCC tool chain). The

output of an XPS project is a single bitstream used to configure the WARP hardware’s

98

FPGA. We use a common bitstream for all three nodes in our experiment. The role

of each node is defined by the position of a switch on the FPGA board, effectively

determining the node’s MAC address at boot. This design achieves one of our key

goals, in that any node can assume any role (source/relay/destination) at run-time

(the PHY actually supports changing roles per-packet; the MAC is responsible for

selecting the active role as needed).

We use three SISO WARP nodes in our experiments, each built from an FPGA

Board (v1.2), Radio Board (v1.4) and Clock Board (v1.1). The full design is forward

compatible with kits built around the newer WARP FPGA Board (v2.2) as well. In

fact, a snapshot of our project, complete with cooperative extensions, was used as the

basis for the release of WARP OFDM Reference Design v15. This design was posted

in August 2010 with support for both versions of the WARP FPGA Board and is

already in use by WARP users worldwide.

Table 5.1 lists the FPGA resource usage for both the PHY and the overall FPGA

design relative to the total resources available in the FPGA (XC2VP70 on the WARP

FPGA Board v1.2).

FPGA Resource
PHY
Tx

PHY
Rx

Full
Design

Available
(XC2VP70)

Logic Slices 4512 10360 29182 33088

Multipliers 72 83 214 328

Block RAMs 8 140 309 328

I/O - - 548 964

Table 5.1 : FPGA resource usage

99

5.2 Channel Emulator

One of the most challenging aspects of conducting rigorous wireless experiments is

controlling the propagation environment. This holds even in an indoor laboratory

setting, where both the number and arrangement of scatters are likely to change in

unmeasurable ways. Interference further complicates real wireless tests. Our nodes

operate in the same 2.4 GHz band as Wi-Fi devices (not to mention microwave ovens,

ZigBee and Bluetooth peripherals, cordless phones, etc.). We need to vary channel

properties as independent variables in our tests, which mandates these properties

have known values at all times. As a result, we cannot meet this requirement with

over the air tests.

For our experiments, we use an Azimuth ACE 400WB wireless channel emula-

tor [38]. This is an instrument designed explicitly to address the shortcomings of over

the air testing. The emulator interfaces to wireless devices using coaxial cables, mim-

icking (from the device’s perspective) an actual antenna connection. The emulator

accepts and generates signals at the same power levels as antennas, allowing wireless

devices under test to behave exactly as if they were communicating over the air.

5.2.1 Connections

The Azimuth emulator is designed for MIMO applications, providing two banks of four

bidirectional RF ports. This design supports tests from 1×1 SISO (using two nodes

on two ports) up to 4×4 MIMO (using two nodes on eight ports). Each emulator

output is configured independently. The configuration includes the fading channel

model and the selection of inputs which contribute to each output. It also includes

an output attenuation which can apply any attenuation in 0-65 dB (in 1 dB steps).

100

The ACE is very well designed, although our application (involving three SISO

nodes in a fully connected network) deviates slightly from its intended use. Our

application exposes two key constraints in the ACE design. First, every input which

contributes to a given output must be subject to the same channel model. This

makes sense in a MIMO configuration; neighboring antennas should see channels with

different instantaneous values but with identical statistics. Further, the configurable

attenuator at each emulator output affects the sum of each faded input. Thus, for a

given output, the average path loss applied to each input is the same (same channel

model and same attenuation). Second, the emulator can only conduct energy between

ports in opposite banks; it cannot construct paths between ports in the same bank.

For our experiments, we need three paths (SR, SD, RD) with independently con-

figured average path loss. The first constraint means we cannot use the emulator’s

internal summing of faded inputs. The second constraint implies that we must connect

at least one node to both banks. We overcome both issues using the connections illus-

trated in Figure 5.2. Note that each WARP node uses two emulator ports, one on each

bank. Each node uses an external power combiner/divider (Pasternack PE2014 [39])

to connect two emulator ports to a single Radio Board. This configuration achieves

three emulated channels whose properties are configured independently: SR (ports

A4↔B4), SD (ports A2↔B2) and RD (ports A3↔B3).

The PE2014 is a passive device. When dividing power, each output produces ≈3.3

dB lower power than the input (0.3 dB insertion loss plus 3 dB for dividing power

between outputs). When combining, each path loses ≈0.3 dB (insertion loss). Every

node uses the same configuration of cables and PE2014, so these losses are uniform

across all three of our emulated links. Figure 5.3 shows a photo of our hardware setup

as described in Figure 5.2.

101

PE2014PE2014

PE2014

A1

A2

A3

A4

B1

B2

B3

B4
Relay

Destination Source
D1

D2

R1

S1

R2

S2

Azimuth ACE 400WB
Channel Emulator

Figure 5.2 : Connections between WARP nodes and the Azimuth channel emulator
for cooperative experiments.

Figure 5.3 : Hardware setup for our experiments, with three WARP nodes and the
Azimuth channel emulator.

5.2.2 Channel Models

The Azimuth emulator implements a wide array of channel models, covering a variety

of propagation environments. Some model outdoor environments, like those developed

by the ITU which capture pedestrian and vehicular mobility (later adopted by the

WiMAX forum for conformance testing of their mobile radio standard).

We selected models from the Azimuth library originally developed by TGn Sync [40],

one of the groups which merged to form the IEEE 802.11n working group. These mod-

els capture the fading properties of an indoor environment, with clusters of reflectors

102

and low mobility. Each model specifies multiple taps, each with a fixed delay and

mean power. The power of each tap varies randomly about its mean at a rate con-

trolled by the velocity parameter common to all taps. The delay spread of each model

is determined by the distribution of delays and mean power across the model’s taps.

Our experiments use these models in a SISO configuration, so other MIMO-specific

parameters (antenna correlation, angles-of-arrival, etc.) are not needed.

The TGn group designed six models, labeled A to F, which vary in the number

and delays of taps. We use the first four of these models (A-D) for our experiments,

focusing primarily on A and B. The parameters for these models are listed in Ta-

ble 5.2.2, and the power delay profiles for models B-D are illustrated in Figure 5.4.

Note that model A has a single tap, modeling a frequency-flat channel.

Model RMS Delay Spread Max Tap Delay Num. Taps
A 0 - 1
B 15 ns 80 ns 9
C 30 ns 200 ns 14
D 50 ns 390 ns 18

Table 5.2 : TGn channel model parameters

0 20 40 60 80
−30

−25

−20

−15

−10

−5

0

5

Delay (ns)

T
ap

 P
ow

er
 (

dB
)

TGn B

Cluster 1
Cluster 2

0 50 100 150 200
−30

−25

−20

−15

−10

−5

0

5

Delay (ns)

TGn C

Cluster 1
Cluster 2

0 100 200 300 400
−30

−25

−20

−15

−10

−5

0

5

Delay (ns)

TGn D

Cluster 1
Cluster 2
Cluster 3

Figure 5.4 : Power delay profiles for TGn channel models B, C and D

103

Azimuth’s implementations of the TGn models provide two tunable parameters.

The first is the emulated velocity, ranging from zero to 1.2 km/h. This parameter

determines the channel coherence time by controlling the update of each tap’s value.

At the maximum velocity of 1.2 km/h and carrier frequency of 2.452 GHz, the co-

herence time exceeds 300 msec. The maximum packet duration in our experiments

is ≈1 ms (see Table 5.3). Thus, with high probability the channel coefficients will

remain constant during each packet transmission, satisfying the block fading assump-

tion inherent in our design.

5.3 Topologies

We emulate various topologies for our three node network by varying the average path

loss along the three emulated channels. We control the average path loss using the

programmable attenuators at each output of the channel emulator. By using just the

attenuators to change emulated topologies we can hold constant every other parameter

in the system (hardware connections, PHY configuration, channel parameters, etc.)

during an experiment.

By sweeping values for the SD, SR and RD path losses, we can emulate placement

of our nodes in a very large space (the attenuators are set from 0 to 65 dB in 1 dB

steps). However, testing every combination of attenuations in infeasible; even for

short trials, testing 663 topologies would take an unreasonably long time. Further,

many topologies are not particularly interesting for studying cooperative gains. For

example, a relay located far from the source will rarely transmit; a relay far from the

destination can provide little gain.

Thus, we focus our experiments on the three topologies discussed below. In each

topology we test both cooperative and non-cooperative transmissions to allow a fair

104

comparison between schemes and gauge the overall impact of cooperation.

Co-located source/relay: Our first topology models co-located source and relay

nodes, each with equivalent path losses to the destination. As in all our experiments,

the three channels employ the same fading model. The output attenuation for the

source-relay channel is set to zero, realizing the minimum possible path loss (≈53 dB)

imposed by the inherent attenuation through the emulator. This loss models nodes

separated by ≈1.5 meters. The source-destination and relay-destination channels

have matching path losses, controlled by the output attenuators on the two emulator

ports feeding the destination node. We sweep attenuations from 0 dB (matching the

SR path) to 36 dB (modeling ≈75 m SD and RD separations).

This topology, with its co-located source and relay nodes, mimics an interesting

usage model for cooperation. Privacy and incentivizing participation are common

concerns with employing cooperation in real networks. Many researchers have ex-

plored these issues. Some propose various forms of encryption to protect payloads

from untrustworthy relays [41]. Others apply techniques from game theory to con-

struct incentive systems to encourage cooperation [42]. But these issues become much

easier if a single user owns the devices participating in a cooperative transmission.

For example, one person’s laptop and phone (with compatible wireless interfaces)

could cooperate to improve communications with a base station.

Equidistant nodes: Our second topology, illustrated in Figure 5.6, models source,

relay and destination nodes equidistant from one another. This configuration uses a

single attenuation value applied to all the outputs of the emulator. We sweep the

range of attenuations from 0 to 36 dB. We chose this topology recognizing it is fre-

105

R

S

DHigh SNR
Fading

Same average SNR
Fading independently

Figure 5.5 : Co-located source/relay topology, modeling a source and relay at a small,
fixed distance cooperating to communicate with a distant destination.

quently used in theory-centric papers on cooperation [3], given its useful property of

being parameterized by a single variable (the average path loss common to all three

links).

R

S D

Same average SNR
Fading independently

Figure 5.6 : Equidistant nodes topology, with source, relay and destination each
separated by a common distance

Linear topology: The final topology we consider, illustrated in Figure 5.7, seeks to

study the effect of relay location on the performance of a cooperative link. In this

setup, the source-destination path loss is fixed, with emulator output attenuation of

18 or 23 dB (modeling distances of 10.4 m and 18 m, respectively). We vary both

106

the source-relay and relay-destination channels, coupling their values so the relay is

always located on the line connecting the source and destination. We sweep relay

locations, starting on the far side of the source, moving in between the source and

destination, finally moving past the destination. We concentrate our tests on the

points between the source and destination, recognizing that the relay will provide its

maximum benefit somewhere in this span. It is important to note we are modeling

various relay locations, not relay mobility. As in all our experiments, the average

path losses along all three channels are fixed during a given trial.

Relay Locations

10.4 m

S D
6 m 6 m

Figure 5.7 : Linear topology for experiments modeling fixed source and destination,
with the relay at various points along the line connecting them.

An interesting issue arises in realizing this topology with the channel emulator.

The intuitive independent variable in this topology is relay location along the SD line,

achieved by setting various path losses for the SR and RD channels. However, recall

from the description of the emulator in Section 5.2 above that the average path loss

along a channel is configured using the programmable attenuator at each emulator

output. These attenuators are set in 1 dB increments. This minimum attenuation

step size of 1 dB proves problematic for realizing the linear topology.

The mapping of average path loss to distance is a straightforward calculation [43].1

1The mapping of path loss to distance requires selection of a path loss exponent. We use 2.1
(modeling indoor propagation) for all distance-path loss mappings in this work. A different exponent
would change only the physical interpretation of average path losses, not our measured performance
at each.

107

The mapping, however, is not linear. For small path losses, a 1 dB step corresponds to

a small change in distance. Conversely, for large path losses a 1 dB change corresponds

to a much larger displacement.

Each relay position in our linear topology defines SR and RD distances; each

distance maps to a corresponding path loss. When these path losses are rounded to

the nearest dB (to use the attenuators set in 1 dB steps), the effective relay location

is shifted away from the SD line by an amount defined by how far each desired path

loss was rounded. The result is an effective topology with the relay moving along a

jagged path, instead of the desired straight line between the source and destination.

We devised a method to address this. Every Azimuth channel model has a tunable

parameter which defines the average gain through the digital filters the emulator uses

to apply channel responses. These gains are specified in 0.1 dB steps over a 40

dB range. Azimuth pre-calibrates these gains so that channel models with different

numbers of taps can be fairly compared. The Azimuth documentation makes clear

that it is important not to deviate too far from each model’s calibrated gain. Too low a

value induces extra quantization error, too large risks saturation. The documentation

warns that the emulator does not alert the user to either condition.

Our approach uses a combination of output attenuation values and a small range

of channel model gains to better emulate relay positions along the linear topology. We

use 10 channel models with identical power delay profiles but with model gains spaced

evenly over a 1 dB range. The right combination of model gain and output attenuation

provides an effective 0.1 dB resolution on average path loss. Figure 5.8 illustrates

the difference between our approach (0.1 dB steps) and using the attenuators alone

(1.0 dB steps). These curves plot the difference between the ideal source-relay distance

and the modeled distance, as a function of location index along the line between the

108

source and destination.

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

D
is

ta
nc

e
E

rr
or

 (
m

)

0.1 dB Step
1.0 dB Step

Figure 5.8 : Errors between desired and actual distances in the linear topology using
only attenuators (1.0 dB step) and attenuators plus model gains (0.1 dB step).

5.4 Cooperative Schemes

A wide variety of cooperative schemes have been proposed in the literature. Most

can be characterized by the kind of processing employed by relay nodes. At one

extreme are relays which perform raw waveform capture and re-transmission. Re-

lays in these schemes apply gain, but no other processing. At the other extreme are

relays which decode the full payload before re-transmitting it, running the received

waveform through a full physical layer receiver and transmitter. Some schemes op-

erate somewhere in between, possibly not decoding the full payload but performing

some other computation on the waveform (compressing [44] it, for example) and re-

transmitting the result.

109

Amplify and Forward: This is a conceptually simple scheme in which a relay

captures the raw waveform corresponding to a source’s transmission, applies some

gain, then re-transmits the waveform to the destination.

In theoretical treatments of amplify and forward [3], the gain is usually modeled

as a single effective gain applied by the relay. These models apply the gain after

the waveform is captured, such that the gain stage adds no noise but does amplify

whatever noise is present in the received waveform.

In our implementation, the gain is actually applied in three stages. The first

two are analog amplifiers in the receive path of the MAX2829 RF transceiver on

the WARP Radio Board. Both are variable gain amplifiers controlled by the AGC

block in our transceiver. We use the same AGC for all nodes, independent of the

cooperative scheme being employed. The AGC algorithm selects the best gains for

scaling the received waveform to fill the dynamic range of the ADCs. The radio

amplifiers, as controlled by the AGC, effectively invert the power loss (average path

loss plus fading) through the channel. It is important to note this gain is applied

before the received waveform is digitized and recorded in the FPGA.

The final gain stage is digital, implemented as a multiplier in the FPGA which

scales the captured I/Q samples before they are re-transmitted. We use a static scaling

value which re-scales the digital values to fill the dynamic range of the transmit DACs.

Thus, in our AF implementation the total gain applied at the relay is a function only

of the instantaneous path loss between the source and relay.

In the experiments below, we evaluate two variations on amplify and forward. In

the first, hereafter abbreviated AF, the relay re-transmits a captured waveform only

if it was able to decode the full packet without header or payload errors. The second,

labeled AF-GH below, relaxes this requirement to any packet received with a good

110

header, regardless of success in decoding the payload.

Decode and Forward: this scheme is likewise simple in concept. In this mode, the

relay employs a full physical layer transceiver (same as the source and destination) and

attempts to decode every transmission from the source. When it succeeds, it initiates

a transmission using the received packet as the input to its own OFDM transmitter.

In our implementation of decode and forward, hereafter abbreviated DF, the relay

re-transmits only those packets it receives with zero errors in the header and payload.

Multi-hop: In this scheme, the relay’s behavior is very similar to DF; it attempts

to receive every source transmission, and re-transmits only those it can decode cor-

rectly. However, in this mode, labeled MHOP below, the source does not transmit

in the second time slot; the destination can only receive the packet from the relay,

and the relay only transmits if it receives the packet from the source. We only test

this scheme in the linear topology, recognizing it provides little insight in our other

topologies (where the SR and RD distances are always the same).

Non-cooperative: In the final scheme, labeled NC below, the relay is simply inac-

tive. We use this mode to establish a baseline for comparing the performance of all

schemes relative to a non-cooperative system.

5.5 Methodology

We seek to be as rigorous as possible in the experimental evaluation of our transceiver’s

performance. This requires we carefully control the conditions under which each mea-

surement is taken. This led us to use a channel emulator, as discussed above. This

111

goal also requires we ensure the data we collect represent the values we are trying to

measure. These requirements inspire additional techniques, discussed below.

5.5.1 WARPnet Framework

One of the most significant challenges in running our experiments is reliably coor-

dinating the behaviors of three WARP nodes, the channel emulator and external

support applications (like the BER calculator) over the course of experiments lasting

hours, sometimes days. An additional complication is the variety of experiments we

conduct, ranging from BER measurements to characterizing oscillator stability. We

address these challenges using WARPnet, a testing framework designed for exactly

these kinds of experiments.

The architecture for WARPnet was conceived by the members of the WARP team

in early 2010 and implemented from scratch in Python by Siddharth Gupta. At its

core, WARPnet is a custom Python framework which provides a level of abstraction

between a high level experiment script and the low level message passing among the

nodes and test instruments. The top level script (also written in Python) uses simple

constructs to send messages to nodes under test. The messages can either update

parameters or request results. Replies from the node are delivered back to the script

to update its records of the experiment.

All node-script communication occurs via a WARPnet server. The script-server

link is a standard socket connection. In the current framework, server-node messages

are sent via raw Ethernet frames. This approach simplifies the design of a WARPnet-

compatible node by avoiding the need for an embedded IP stack. It also emphasizes

that only the WARPnet server needs to understand its connection to the nodes; new

node-server connections could be designed without any modifications top level scripts.

112

A final key feature of WARPnet is that only the top level script and node design

need to understand the custom messages used in each experiment. Specifically, adding

new message types requires no code changes to the WARPnet server. This realizes

one of the key tenets of the WARPnet architecture, that a researcher is responsible

for their experiment and node implementation, but that the framework can facilitate

all communication between the experimental script and the nodes under test.

The full WARPnet framework is open-source [45] and has already been adopted

by other WARP users outside Rice to conduct their own experiments.

#####################

Block 1: Init

#####################

#Load the WARPnet frameworks

from warpnet_framework.warpnet_client import *

#Enumerate the WARP nodes under test

createNode(nodes , Node(0, NODE_PCAP))

createNode(nodes , Node(1, NODE_PCAP))

#####################

Block 2: Msgs

#####################

#Define message templates , and associate them with the nodes

cmdStructStart = CommandStruct(COMMANDID_STARTTRIAL , 0)

nodes[0].addStruct("cmdStructStart", cmdStructStart)

cmdStructStop = CommandStruct(COMMANDID_STOPTRIAL , 0)

nodes[0].addStruct("cmdStructStop", cmdStructStop)

perStruct0 = ObservePERStruct()

perStruct1 = ObservePERStruct()

nodes[0].addStruct("perStruct", perStruct0)

#Register the nodes and message templates with the WARPnet server

sendRegistrations(nodes)

#####################

Block 3: Loop

#####################

#Define the attenuations to test

attens = range(0, 37, 4)

#Run a trial for each attenuation

for i, attn in enumerate(attens):

113

#Update the SD attenuation in the emulator

emulator("link_atten", "D1", "S1", attn)

#Run a 20 second trial

nodes[0].sendToNode("cmdStructStart")

time.sleep(20)

nodes[0].sendToNode("cmdStructStop")

#Request Tx/Rx packet counts from each node

nodes[0].sendToNode("perStruct")

nodes[1].sendToNode("perStruct")

#Log the results as M-code for plotting in MATLAB

log("sd_atten (%d)=%d;" % (i, attn))

log("n0_tx(%d)=%d;" % (i, perStruct0.numTx))

log("n1_rxGood (%d)=%d;" % (i, perStruct1.numRx_good))

log("n1_rxGhBp (%d)=%d;" % (i, perStruct1.numRx_GhBp))

log("n1_rxBadHdr (%d)=%d;" % (i, perStruct1.numRx_badHdr))

Listing 5.1: Simple WARPnet script for testing PER vs. SNR

Listing 5.1 shows an example WARPnet script. This script consists of three sections:

1. Initialization: Block 1 loads the WARPnet frameworks and enumerates the

WARP nodes under test

2. Messages: Block 2 specifies the messages to be sent and received to each

WARP node. Instances of two example messages are used here: CommandStruct

(used to start and stop experimental traffic generation) and ObservePERStruct

(used to report transmit and receive packet counts)

3. Experiment Loop: Block 3 defines a range of attenuations for application by

the channel emulator, then conducts a separate 20 second trial for each atten-

uation value. At the end of each trial the Tx/Rx packet counts are requested

from each node and recorded in a log file.

This WARPnet script illustrates the basic flow of all our experiments. The WARPnet

scripts for our experiments are considerably more complicated, looping over inter-

114

node attenuations, channel models, cooperative schemes, modulation rates and packet

lengths. But even our longest scripts exercise the same primitives (initialization,

message definition and experiment loops) exercised in the simple example above.

Our suite of WARPnet scripts for characterizing the cooperative PHY will be

available open-source in the WARP repository.

5.5.2 Node Behaviors Across Time Slots

All of the cooperative schemes we consider operate in two time slots. In the first time

slot the source attempts to deliver its payload to the relay. In the second slot the

source and relay cooperate to deliver the payload to the destination.

At many points in the topologies under test, the source and destination may be

able to communicate directly. In a deployed network of cooperative nodes, both direct

and cooperative communication would be employed, with a cooperation-aware MAC

protocol deciding which nodes participate in each packet exchange. We discuss early

results from our work on one such protocol in Section 7.1.1. In this section, however,

we focus on physical layer performance when cooperation is employed, not on the

protocol which decides when to cooperate. Thus, we gather results only in the second

time slot of each cooperative transmission, ignoring any potential receptions at the

destination in the first slot.

The obvious way to achieve this is to disable the S→D path through the emulator

in the first time slot. Unfortunately, this is infeasible. The emulator requires its

internal processing be halted before the emulated connectivity can be changed. Stop-

ping and starting the emulator has a latency of ≈15 seconds. It is possible to change

attenuation values without halting emulation. However, even this process takes a few

seconds.

115

Instead, we achieve the necessary behavior with external control signals generated

by the source node and connected to the relay and destination nodes via dedicated

wires. Each signal feeds into the energy detection block in the OFDM receiver (de-

scribed in Section 4.1.4). When asserted, this input inhibits reception at a node by

blocking energy detection events from advancing the OFDM receiver’s state machine.

Blocking packet detection has the identical effect as driving the actual received power

to zero (as disabling the emulator path would do).

At first glance, this wired connection between nodes seems to violate our tenet of

“no cheating” on synchronization. It is important to recognize, however, that we use

this back channel connection to block receiver processing, not to trigger it. When

a node is allowed to receive it does so autonomously, establishing all necessary syn-

chronization (energy detection, symbol timing, CFO, etc.) using just the received

waveform. We use this technique to assure our cooperative performance measure-

ments reflect only those transmissions where cooperation is possible.

Figure 5.9 shows the node behaviors and timing of the time slots, depicting the

two slots of a single cooperative exchange. Each exchange starts when the source

node periodically generates a new random packet payload. It adds a header with

S/R/D addresses and a sequence number. It then transmits the packet twice with a

short, fixed idle time between transmissions (TIT). This delay allows the waveform

to finish propagating through the emulator (it has ≈1 µs latency) and for the relay

to finishing processing the received waveform. The timer which triggers the second

transmission is implemented in the FPGA, assuring a deterministic interval.

The OFDM receiver at the destination is disabled during the first transmission via

the control signal discussed above. The relay attempts to decode the transmission by

the source in the first slot. Then, depending on programmed conditions, it may re-

116

transmit the packet simultaneous with the source’s second transmission. The OFDM

receiver at the relay is disabled in the second slot, assuring it does not misinterpret

the second transmission in cases where it fails to receive the first.

The destination attempts to receive the second transmission whether or not the

relay participates. The source imposes a short inter-packet interval (TIP) after the sec-

ond transmission, allowing every node to update and report statistics via WARPnet.

The source node increments internal counters per-scheme for every transmission. The

relay and destination record the ending state (good/bad header/payload) for every

reception. The source and destination nodes also report full packet payloads via

WARPnet for BER calculations.

Source
Tx:

Relay
Tx:

TTX

Destination
Rx: Disabled

Disabled

Relay
Rx:

TIT TIP

Figure 5.9 : Timing of Tx/Rx modes for cooperative experiments.

The actual transmit and idle intervals depend on the payload length and modu-

lation rate specified at run-time. Table 5.3 summarizes the parameter combinations

we used in our experiments.

117

Payload Data Rate TTX TIT TIP
1412 bytes / QPSK 12 Mbps 1008 µs 30.4 µs 358 µs

1412 bytes / 16-QAM 24 Mbps 536 µs 30.4 µs 344 µs
692 bytes / QPSK 12 Mbps 528 µs 30.4 µs 358 µs

692 bytes / 16-QAM 24 Mbps 296 µs 30.4 µs 344 µs

Table 5.3 : Payload and timing parameters for cooperative experiments.

5.5.3 Interleaving Modes

In an ideal experimental setup, we would be able to test nodes utilizing each cooper-

ative scheme under identical conditions. If this were possible, we could run back-to-

back experiments testing each cooperative scheme in isolation. In practice, however,

we cannot control every factor which may impact performance. As a result, rather

than test schemes in isolate, we interleave them in time, cycling between modes with

every packet transmission. With high probability this approach exposes each scheme

to the same instantaneous channels by testing every scheme inside each coherence

interval (assuming sufficiently long coherence times, as provided by our emulated

channels). It also helps evenly distribute the impact of any uncontrolled external fac-

tors, like carrier frequency drifts, temperature changes or interference levels, which

may affect results.

Interleaving schemes per-packet may seem to present significant synchronization

challenges in coordinating the behavior of the source and relay, and correctly logging

receptions at the destination. This approach is actually straightforward to imple-

ment using the auto-response subsystem already integrated into our transceiver. The

primary goal in designing auto-responders was to reduce randomness in the timing

of transmissions from cooperating nodes. However, the extensive programability of

this subsystem also enables its use in defining the relay’s behavior on per-packet time

118

scales.

As explained in Section 4.2, the conditions for triggering an automatic transmis-

sion are programmable, and include pattern matching against received headers. By

using a header field to indicate the cooperation mode (analogous to a packet type),

the source node can effectively program relay behaviors per packet. The relay uses

an auto-responder action per cooperative mode, with each conditioned on receiving

a packet of a given type. The action configurations are summarized in Table 5.4.

Table 5.4 : Relay auto-responder action configurations for cooperative tests
Scheme Action Conditions Tx Options
AF Tx AF_BUF (GOOD_PLD & MATCH_RLYADDR & MATCH_AF) -
AF-GH Tx AF_BUF (GOOD_HDR & MATCH_RLYADDR & MATCH_AFGH) -
DF Tx RX_BUF (GOOD_PLD & MATCH_RLYADDR & MATCH_DF) USE_PRECFO

NC-MHOP Tx RX_BUF (GOOD_PLD & MATCH_RLYADDR & MATCH_NCMHOP) -

The abbreviations used here are defined below:

• AF_BUF: ID for the AF waveform buffer

• RX_BUF: ID for the current receive packet buffer

• GOOD_PLD: Require the received packet (header and payload) have no errors

• GOOD_HDR: Require the received header have no errors

• MATCH_RLYADDR: Require the relay address field in the received header match

the relay’s local address

• MATCH_AF/MATCH_AFGH/MATCH_DF/MATCH_NCMHOP: Require the packet type field

in the received header match the specified cooperative mode

119

5.5.4 Interleaving Trials

Ideally, our hardware setup would operate entirely independent of the surrounding

environment. The perfect setup would be a climate controlled anechoic test chamber.

Lacking access to such a facility, we must address the impact of environmental factors

in conducting our experiments.

For example, changes in temperature trigger frequency corrections in the oscil-

lators. As explored in Section 3, our design can handle slow frequency drift, but

sudden jumps can cause unrecoverable errors. Temperature changes also affect the

noise characteristics of the analog ICs in the WARP hardware. Ambient interference

can also contribute errors. Despite connecting our nodes to the emulator via coaxial

cables, the cable connections and traces on the WARP Radio Board do admit some

RF energy from the environment. Strong interference can cause symbols errors and

packet detection failures, especially when testing topologies at low SNR where the ra-

dios apply the most gain. These are time-varying factors which we cannot control and

whose effects we cannot directly measure. In order to distribute their impact across

our results, we structure our long experiments as many iterations of short trials.

Each trial, usually 2-3 minutes long, tests a single combination of independent

variables (attenuations, channel model and modulation rate). During a trial the

source node generates traffic at regular intervals, cycling through cooperative modes

per-packet. At the end of each trial, the transmitted and received packet counts

are gathered from each node via WARPnet. The top level WARPnet script records

the parameter combinations and raw packet counts per cooperative scheme per trial.

Every combination of parameter values is re-tested with each iteration. When the

experiment is complete, we sum the raw packet and bit counts for each trial across

iterations, then calculate ratios for PER and BER.

120

Consider the experiment whose results are presented in Section 6.2.1. Here we

tested 10 node placements (attenuation combinations) for two channel models and

two payload modulation rates, resulting in 40 two minute trials per iteration. We

can observe the results as the experiment progresses (the WARPnet log is written to

disk with each update), gauging whether sufficient errors have been observed at every

point to generate meaningful error rate plots.

5.6 Metrics

Our experiments are focused on characterizing the performance of our physical layer

transceiver design. Two primary metrics are useful here: packet error rate and bit

error rate. Our definitions for each are discussed below.

Notice that neither metric seeks to measure performance as a function of time.

Such measurements (throughput, for example) are certainly important in gauging the

performance of a real network. However, the true temporal cost of a given packet

exchange cannot be meaningfully computed in the absence of a higher layer protocol.

This is especially true for transmissions employing physical layer cooperation.

All our cooperative schemes operate across two transmissions, with the actual co-

operation potentially occurring during the latter one. Any throughput measurement

would need to account for both transmissions. For example, consider a MAC design

which employs cooperation for every packet, guaranteeing two transmissions of each

payload. The temporal cost of cooperation here is 100% (relative to a single slot,

non-cooperative transmissions at the same rate). However, consider a protocol utiliz-

ing cooperation only during MAC re-transmissions, where a payload is transmitted

again whether cooperation is employed or not. In such a design, the temporal cost

121

of cooperation would be zero.2 Early results for one such protocol are discussed in

Section 7.1.1.

Our work here is focused on measuring the expected outcomes of cooperative

transmissions for various schemes, topologies and channel conditions. Coupled with

our exploration of the requirements for employing each scheme, we anticipate these

measurements will prove useful to MAC researchers seeking to incorporate physical

layer cooperation into their protocol designs.

5.6.1 Packet Error Rate

Recall from Section 4.1.5 that our OFDM receiver progresses through a simple state

machine triggered by an energy detection event. We classify a packet error as any

transmission which does not end in the Good Payload state at the intended destina-

tion. This leads to our definition of packet error rate, (1− NRxGood

NTx
), where NRxGood is

the number of packets received without error (i.e. ended in the Good Payload state)

and NTx is the number of transmitted packets.

Figure 5.10 illustrates the OFDM receiver state transitions and outcomes for a

given transmission. While the various failure states (Failed Detection, Bad Header

and Bad Payload) all count as packet errors, our design tracks how many packets

end in each state independently. This capability proves very useful in analyzing the

overall PER and BER results for a given trial, helping identify the dominant source

of errors in various regimes. The discussion of results in Section 6.5 explores this

further.

2Cooperation here would certainly have other costs, like increased interference due to the larger
spatial-spectral footprint for a given payload. Studying these costs falls far outside the scope of
our work, but our bit and packet error rate measurements should prove useful in understanding the
potential benefits.

122

Packet Errors

Energy
Detection

Symbol
Sync

Good
Header

Good
Payload

Failed
Detection

Bad
Header

Bad
Payload

Transmission

Figure 5.10 : State transitions in the OFDM receiver for a given transmission, indi-
cating which end states are counted as packet errors.

5.6.2 Bit Error Rate

Bit error rate is a widely used metric for understanding PHY performance. From the

MAC’s perspective, any bit error is unacceptable; packets received with 1 or 5000 bit

errors are equally useless for higher network layers. But knowing how many bit errors

are responsible for a bad packet is very useful in gauging performance of a PHY and

in designing error correcting codes.

Recall from Section 4.1.5 that our OFDM receiver interprets header fields to de-

termine the payload length and modulation rate for each reception. If an error is

detected in the header itself (the header has its own checksum) the receiver halts and

does not attempt to receive the payload, being unsure of the parameters needed to

process it. This is the Bad Header outcome illustrated in Figure 5.10. Thus, our de-

sign experiences payload bit errors only for receptions which end in the Bad Payload

123

state.

This receiver design leads to a definition of bit error rate as the ratio BError

BTotal
,

where BError is the number of payload bit errors and BError is the total number of

payload bits processed. Note that BTotal includes bits from packets which end in both

the Good and Bad Payload states. Header bits do not count towards either value.

Packets which are not detected (Failed Detection outcome) or those received with

header errors (Bad Header outcome) do not contribute to the BER calculation. As a

result, our BER measurements must be considered in tandem with the corresponding

packet error rates to fully understand the transceiver performance.

124

Chapter 6

Experiments with Full Cooperative Transceiver

In Chapters 3 and 4 we presented the design of our cooperative transceiver, including

our solutions to numerous unique challenges encountered when implementing physical

layer cooperation. In Chapter 5 we presented the design of experimental methods for

rigorously characterizing the overall performance of our transceiver under a variety

of topologies and channel conditions. This chapter presents the culmination of these

design efforts in the form of extensive PER and BER measurements.

Section 6.1 below explains the structure and parameters common to all the exper-

iments presented in this chapter. Sections 6.2-6.4 present the PER and BER results

for the co-located source/relay, equidistant nodes and linear topologies, respectively.

Finally, Section 6.5 presents analysis of a few aspects of the overall performance

results, focusing on error sources which dominate performance in specific regimes. We

identify three dominant sources of errors and provide additional experimental results

to isolate and explain the underlying causes.

The sections below present BER and PER results for each experiment. As dis-

cussed in Chapter 5 our methodology also records the numbers of packets which end

in each error state in the receiver. Taken together, these counts compose the overall

packet error rate. The complete set of plots for the probability of each packet error

event is included in Appendix A.

125

6.1 Experimental Parameters

The PER/BER plots in the sections below are generated by a series of standalone

experiments. Each of these experiments follows the same basic flow and was executed

via a WARPnet script. Our WARPnet script has the same overall structure as the

example in Section 5.5.1. The script here, however, executes four nested loops in

order to sweep over every combination of the experimental parameters. The loop

structure is illustrated in Figure 6.1 and is detailed below.

for each Iteration
for each ChannelModel

for each TopologyPoint
for each ModulationRate

Execute Trial

Figure 6.1 : Structure of each experiment, with four nested loops sweeping over
multiple iterations of every combination of experimental parameters.

Our experiment loops execute as follows:

• Execute Trial: Each trial consists of 2-3 minutes of continuous traffic gen-

eration, with packet transmissions initiated at a fixed interval by the source

node. Cooperative schemes are interleaved per-packet. The nodes log every

packet transmission and reception and reports these counts via WARPnet after

every trial. A WARPnet co-processor logs the counts of bit errors and total bits

received per trial.

• Modulation Rate: We test payload modulation rates of QPSK and 16-QAM.

126

Packet headers are modulated with QPSK in every experiment.

• Topology Point: Each point in the emulated topology is realized by setting

the three channel emulator output attenuations (S→D, S→R, R→D), defining

the average path losses along the three links. The total attenuation along each

path is 53 dB higher than the configured attenuation, due to cable losses, power

splitting and the emulator’s inherent attenuation.

• Channel Model: We run every test with the TGn A (frequency flat fading)

and TGn B (frequency selective fading) channel models. Both models are

configured for the maximum possible fading velocity of 1.2 km/h.

• Iteration: Every combination of experimental parameters is tested multiple

times; each iteration is a complete sweep of the parameters and is logged inde-

pendently. We sum over all iterations in an experiment to generate the aggregate

PER/BER results.

127

6.2 Co-located Source/Relay Topology

This section presents the PER and BER results for two experiments of the co-located

source/relay topology, illustrated in Figure 6.2, testing payload lengths of 1412 and

692 bytes, respectively. The parameters common to both experiments are listed below;

experiment-specific parameters are listed above each set of results.

• Topology Points: The SR attenuation is always zero; the SR and RD atten-

uations are always equal and are swept from 0 to 36 dB in 4 dB steps, giving

10 distinct topology points. The overall path losses are 53 dB higher than the

attenuation settings, due to cable losses, power splitting and the emulator’s

inherent attenuation.

R

S

D

Equal Output Attenuations
Swept 0 to 36 dB in 4 dB steps

0 dB Output
Attenuation

Figure 6.2 : Co-located source/relay topology.

• Cooperative Schemes: This experiment tests three schemes:

– AF: Amplify and forward (relay re-transmits successfully decoded packets)

– DF: Decode and forward

– NC: Non-cooperative (no relay participation)

128

6.2.1 PER/BER with 1412 Byte Payloads

The eight plots below present the PER and BER for the equidistant nodes topology

tested with 1412 byte payloads. Each plot shows three curves, one per cooperative

scheme, and represents a single combination of channel model and payload modulation

rate.

This experiment executed 14 iterations; each trial lasted 2.5 minutes. For QPSK

modulation each data point below represents 232k packet transmissions. For 16-QAM

each point represents 378k transmissions. In total this experiment tested 6.9 million

packets for QPSK and 11.3 million for 16-QAM.

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

10
0

SD and RD Attenuation

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

10
0

SD and RD Attenuation

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF

(b) TGn B Channel

Figure 6.3 : Packet error rates for co-located source/relay topology with 1416 byte,
QPSK modulated payloads.

129

−35 −30 −25 −20 −15 −10 −5 0

10
−2

10
−1

10
0

SD and RD Attenuation

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−2

10
−1

10
0

SD and RD Attenuation

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF

(b) TGn B Channel

Figure 6.4 : Packet error rates for co-located source/relay topology with 1416 byte,
16-QAM modulated payloads.

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

SD and RD Attenuation

B
it

E
rr

or
 R

at
e

NC
DF
AF

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

SD and RD Attenuation

B
it

E
rr

or
 R

at
e

NC
DF
AF

(b) TGn B Channel

Figure 6.5 : Bit error rates for co-located source/relay topology with 1416 byte, QPSK
modulated payloads.

130

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

SD and RD Attenuation

B
it

E
rr

or
 R

at
e

NC
DF
AF

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

SD and RD Attenuation

B
it

E
rr

or
 R

at
e

NC
DF
AF

(b) TGn B Channel

Figure 6.6 : Bit error rates for co-located source/relay topology with 1416 byte,
16-QAM modulated payloads.

131

6.2.2 PER/BER with 692 Byte Payloads

The eight plots below present the PER and BER for the equidistant nodes topology

tested with 1412 byte payloads. Each plot shows four curves, one per cooperative

scheme, and represents a single combination of channel model and payload modulation

rate.

This experiment executed 18 iterations; each trial lasted 3 minutes. For QPSK

modulation each data point below represents 316k packet transmissions. For 16-QAM

each point represents 633k transmissions. In total this experiment tested 12.7 million

packets for QPSK and 25.3 million for 16-QAM.

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

10
0

SD and RD Attenuation

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

10
0

SD and RD Attenuation

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure 6.7 : Packet error rates for co-located source/relay topology with 692 byte,
QPSK modulated payloads.

132

−35 −30 −25 −20 −15 −10 −5 0

10
−3

10
−2

10
−1

10
0

SD and RD Attenuation

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−3

10
−2

10
−1

10
0

SD and RD Attenuation

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure 6.8 : Packet error rates for co-located source/relay topology with 692 byte,
16-QAM modulated payloads.

−35 −30 −25 −20 −15 −10 −5 0

10
−8

10
−6

10
−4

10
−2

SD and RD Attenuation

B
it

E
rr

or
 R

at
e

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−8

10
−6

10
−4

10
−2

SD and RD Attenuation

B
it

E
rr

or
 R

at
e

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure 6.9 : Bit error rates for co-located source/relay topology with 692 byte, QPSK
modulated payloads.

133

−35 −30 −25 −20 −15 −10 −5 0

10
−6

10
−5

10
−4

10
−3

10
−2

SD and RD Attenuation

B
it

E
rr

or
 R

at
e

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−6

10
−5

10
−4

10
−3

10
−2

SD and RD Attenuation

B
it

E
rr

or
 R

at
e

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure 6.10 : Bit error rates for co-located source/relay topology with 692 byte,
16-QAM modulated payloads.

6.2.3 Observations

We can make a few observations from these results. At nearly every topology point

cooperation provides a performance gain; in some cases the gain is substantial. Con-

sider the PER for QPSK payloads in a flat fading channel, shown in Figure 6.3(a).

The peak PER improvement for DF vs. NC is nearly 45× (1.03 · 10−4 vs. 4.6 · 10−3 at

-8 dB attenuation). Further, the overall shape of the cooperative curves demonstrate

evidence of diversity via steeper slopes with increasing SNR than the non-cooperative

curves.

It is clear that both modulation rate, channel model and packet length affect

performance of every scheme. The smaller noise margin for 16-QAM and longer

delay spread of the TGn B model both degrade performance. Even subject to these

degradations, DF (and in some cases AF) still outperform the non-cooperative link.

Shorter packets also clearly perform better.

134

There are a few anomalies in these results. For example, refer to the PER curves

for 16-QAM in a flat fading channel, shown in Figure 6.4(a). Note how the PER for

AF is actually worse than NC at high SNR. But compare this to the corresponding

BER curves in Figure 6.6. Here, AF clearly outperforms NC at all SNRs. This

observation is explored in detail in Section 6.5.3. Also consider all the curves for the

TGn B channel model. With this model, every scheme exhibits an error floor in the

high SNR regime. This observation is explored in detail in Section 6.5.2.

135

6.3 Equidistant Nodes Topology

This section presents the PER and BER results for two experiments of the equidistant

nodes topology, illustrated in Figure 6.11, testing payload lengths of 1412 and 692

bytes, respectively. The parameters common to both experiments are listed below;

experiment-specific parameters are listed above each set of results.

• Topology Points: The SD, SR and RD attenuations are always equal. The

common attenuation is swept from 0 to 36 dB in 4 dB steps, giving 10 distinct

topology points. The overall path losses are 53 dB higher than the attenua-

tion setting, due to cable losses, power splitting and the emulator’s inherent

attenuation.

R

S D

Equal Output Attenuations
Swept 0 to 36 dB in 4 dB steps

Figure 6.11 : Equidistant nodes topology.

• Cooperative Schemes: This experiment tests four schemes:

– AF: Amplify and forward (relay re-transmits successfully decoded packets)

– AF-GH: Amplify and forward - good header (relay re-transmits packets

with successfully decoded headers)

136

– DF: Decode and forward

– NC: Non-cooperative (no relay participation)

6.3.1 PER/BER with 1412 Byte Payloads

The eight plots below present the PER and BER for the equidistant nodes topology

tested with 1412 byte payloads. Each plot shows four curves, one per cooperative

scheme, and represents a single combination of channel model and payload modulation

rate.

This experiment executed 31 iterations. For QPSK modulation each data point

below represents 385k packet transmissions. For 16-QAM each point represents 628k

transmissions. In total this experiment tested 15.4 million packets for QPSK and

25.1 million for 16-QAM.

−35 −30 −25 −20 −15 −10 −5 0

10
−3

10
−2

10
−1

10
0

Inter−node Attenuation (dB)

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−3

10
−2

10
−1

10
0

Inter−node Attenuation (dB)

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure 6.12 : Packet error rates for equidistant nodes topology with 1412 byte, QPSK
modulated payloads.

137

−35 −30 −25 −20 −15 −10 −5 0

10
−2

10
−1

10
0

Inter−node Attenuation (dB)

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−2

10
−1

10
0

Inter−node Attenuation (dB)

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure 6.13 : Packet error rates for equidistant nodes topology with 1412 byte, 16-
QAM modulated payloads.

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

Inter−node Attenuation (dB)

B
it

E
rr

or
 R

at
e

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

Inter−node Attenuation (dB)

B
it

E
rr

or
 R

at
e

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure 6.14 : Bit error rates for equidistant nodes topology with 1412 byte, QPSK
modulated payloads.

138

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

Inter−node Attenuation (dB)

B
it

E
rr

or
 R

at
e

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

Inter−node Attenuation (dB)

B
it

E
rr

or
 R

at
e

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure 6.15 : Bit error rates for equidistant nodes topology with 1412 byte, 16-QAM
modulated payloads.

6.3.2 PER/BER with 692 Byte Payloads

The eight plots below present the PER and BER for the equidistant nodes topology

tested with 692 byte payloads. Each plot shows four curves, one per cooperative

scheme, and represents a single combination of channel model and payload modulation

rate.

This experiment executed 24 iterations. For QPSK modulation each data point

below represents 299k packet transmissions. For 16-QAM each point represents 595k

transmissions. In total this experiment tested 11.9 million packets for QPSK and

23.8 million for 16-QAM.

139

−35 −30 −25 −20 −15 −10 −5 0
10

−4

10
−3

10
−2

10
−1

10
0

Inter−node Attenuation (dB)

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0
10

−4

10
−3

10
−2

10
−1

10
0

Inter−node Attenuation (dB)

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure 6.16 : Packet error rates for equidistant nodes topology with 692 byte, QPSK
modulated payloads.

−35 −30 −25 −20 −15 −10 −5 0

10
−3

10
−2

10
−1

10
0

Inter−node Attenuation (dB)

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−3

10
−2

10
−1

10
0

Inter−node Attenuation (dB)

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure 6.17 : Packet error rates for equidistant topology nodes with 692 byte, 16-QAM
modulated payloads.

140

−35 −30 −25 −20 −15 −10 −5 0

10
−6

10
−4

10
−2

Inter−node Attenuation (dB)

B
it

E
rr

or
 R

at
e

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

Inter−node Attenuation (dB)

B
it

E
rr

or
 R

at
e

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure 6.18 : Bit error rates for equidistant topology nodes with 692 byte, QPSK
modulated payloads.

−35 −30 −25 −20 −15 −10 −5 0

10
−6

10
−5

10
−4

10
−3

10
−2

Inter−node Attenuation (dB)

B
it

E
rr

or
 R

at
e

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−6

10
−5

10
−4

10
−3

10
−2

Inter−node Attenuation (dB)

B
it

E
rr

or
 R

at
e

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure 6.19 : Bit error rates for equidistant topology nodes with 692 byte, 16-QAM
modulated payloads.

141

6.3.3 Observations

Overall the results for the equidistant nodes topology are consistent with those for

the co-located source/relay topology. The same general trends are apparent, with DF

performing better than other schemes in every test, QPSK outperforming 16-QAM

and shorter packets performing better than long ones.

One key difference between the equidistant and co-located source/relay results

is the performance of AF. For example, compare the DF and AF PER curves in

Figure 6.3 (co-located source/relay topology) to those in Figure 6.12 (equidistant

nodes topology). Both figures represent 1412 byte, QPSK payloads in frequency flat

fading. The DF curves are nearly identical; there is a small decrease in performance

in the equidistant nodes topology. The PER for AF, however, is much worse in the

equidistant case. This clearly demonstrates the impact of noise amplification in AF.

The only difference between the experimental parameters for these topologies is the

attenuation of the source-relay path. As this attenuation increases the SNR of the

waveform captured at the relay decreases. When this same waveform is amplified and

re-transmitted the lower SNR translates into more noise in the relay’s contribution

to the cooperative transmission. This amplified noise clearly decreases performance

at the destination.

142

6.4 Linear Topologies

This section presents the PER and BER results for two experiments of linear topolo-

gies. The parameters common to both experiments are listed below; experiment-

specific parameters are listed above each set of results.

• Topology Points: These experiments test two linear topologies, emulating

source-destination separations of 10.4 and 18 m. In both, SD attenuation is

fixed, while the SR and RD attenuations are varied in tandem to emulate various

relay positions along the SD line. The actual attenuations employed are listed

above each set of results.

• Cooperative Schemes: This experiment tests five schemes:

– AF: Amplify and forward (relay only re-transmits packets with successfully

decoded payloads)

– AF-GH: Amplify and forward - Good Header (relay only re-transmits

packets with successfully decoded headers)

– DF: Decode and forward

– MHOP: Multi-hop (only relay transmits in second slot, and only if it

decodes the payload successfully)

– NC: Non-cooperative (no relay participation)

6.4.1 PER/BER with 10.4 m SD Separation

The eight plots below present the PER and BER for a linear topology with the

source and destination nodes separated by 10.4 m. This experiment uses 1412 byte

payloads. Each plot shows five curves, one per cooperative scheme, and represents a

143

single combination of channel model and payload modulation rate. The X-axes are

all relay position along the SD line in meters.

 = Relay Locations

10.8 m

S D
6 m 6 m

Figure 6.20 : Linear topologies with 10.4 m source/destination separation.

Table 6.1 lists the attenuations used to emulate each relay position in this topology.

The source-destination attenuation is fixed at 18 dB for all trials. The actual average

path loss along each link is 53 dB higher than each attenuation, due to cable losses,

power splitting and the emulator’s inherent attenuation.

Relay Position SR Attenuation RD Attenuation
-11.2 m 13.0 dB 22.1 dB
-9.2 m 9.3 dB 21.0 dB
-7.2 m 2.9 dB 19.6 dB
-3.2 m 2.9 dB 16.1 dB
-2.1 m 6.9 dB 14.8 dB
-1.0 m 9.6 dB 13.3 dB
0.1 m 11.8 dB 11.6 dB
1.2 m 13.5 dB 9.5 dB
2.2 m 14.9 dB 6.6 dB
8.2 m 20.3 dB 6.6 dB
11.1 m 22.1 dB 13.0 dB

Table 6.1 : Attenuations configured in the channel emulator for each relay position
in the 10.4 m SD separation linear topology.

This experiment executed 22 iterations. For QPSK modulation each data point

below represents 319k packet transmissions. For 16-QAM each point represents 536k

transmissions. In total this experiment tested 17.6 million packets for QPSK and

29.5 million for 16-QAM.

144

−10 −5 0 5 10
10

−4

10
−3

10
−2

10
−1

Relay Location (m)

P
ac

ke
t E

rr
or

 R
at

e

Src Dest

NC
DF
AF

MHOP
AF−GH

(a) Frequency Flat Channel

−10 −5 0 5 10
10

−4

10
−3

10
−2

10
−1

Relay Location (m)

P
ac

ke
t E

rr
or

 R
at

e

Src Dest

NC
DF
AF

MHOP
AF−GH

(b) TGn B Channel

Figure 6.21 : Packet error rates for linear topology QPSK modulated payloads and
10.4 m SD separation.

−10 −5 0 5 10

10
−2

10
−1

Relay Location (m)

P
ac

ke
t E

rr
or

 R
at

e

Src Dest

NC
DF
AF

MHOP
AF−GH

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−2

10
−1

Relay Location (m)

P
ac

ke
t E

rr
or

 R
at

e

Src Dest

NC
DF
AF

MHOP
AF−GH

(b) TGn B Channel

Figure 6.22 : Packet error rates for linear topology 16-QAM modulated payloads and
10.4 m SD separation.

145

−10 −5 0 5 10

10
−6

10
−5

10
−4

10
−3

Relay Location (m)

B
it

E
rr

or
 R

at
e

Src Dest

NC
DF
AF

MHOP
AF−GH

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−6

10
−5

10
−4

10
−3

Relay Location (m)

B
it

E
rr

or
 R

at
e

Src Dest

NC
DF
AF

MHOP
AF−GH

(b) TGn B Channel

Figure 6.23 : Bit error rates for linear topology QPSK modulated payloads and 10.4
m SD separation.

−10 −5 0 5 10

10
−4

10
−3

Relay Location (m)

B
it

E
rr

or
 R

at
e

Src Dest

NC
DF
AF

MHOP
AF−GH

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−4

10
−3

Relay Location (m)

B
it

E
rr

or
 R

at
e

Src Dest

NC
DF
AF

MHOP
AF−GH

(b) TGn B Channel

Figure 6.24 : Bit error rates for linear topology 16-QAM modulated payloads and
10.4 m SD separation.

146

6.4.2 PER/BER with 18 m SD Separation

The eight plots below present the PER and BER for a linear topology with the source

and destination nodes separated by 18 m. This experiment uses 1412 byte payloads.

Each plot shows five curves, one per cooperative scheme, and represents a single

combination of channel model and payload modulation rate. The X-axes are all relay

position along the SD line in meters.

 = Relay Locations

18 m

S D
6 m 6 m

Figure 6.25 : Linear topologies with 18 m source/destination separation.

Table 6.2 lists the attenuations used to emulate each relay position in this topology.

The source-destination attenuation is fixed at 23 dB for all trials. The actual average

path loss along each link is 53 dB higher than each attenuation, due to cable losses,

power splitting and the emulator’s inherent attenuation.

This experiment executed 12 iterations. For QPSK modulation each data point

below represents 174k packet transmissions. For 16-QAM each point represents 293k

transmissions. In total this experiment tested 9.6 million packets for QPSK and

16.1 million for 16-QAM.

147

Relay Position SR Attenuation RD Attenuation
-15.0 m 13.0 dB 25.6 dB
-13.0 m 9.3 dB 24.8 dB
-11.0 m 2.9 dB 24.0 dB
-7.0 m 2.9 dB 21.9 dB
-4.8 m 9.7 dB 20.6 dB
-2.6 m 13.6 dB 19.0 dB
-0.3 m 16.3 dB 17.1 dB
1.8 m 18.3 dB 14.6 dB
4.0 m 20.0 dB 11.3 dB
12.0 m 24.4 dB 6.6 dB
15.0 m 25.6 dB 13.0 dB

Table 6.2 : Attenuations configured in the channel emulator for each relay position
in the 18 m SD separation linear topology.

−10 −5 0 5 10

10
−2

10
−1

Relay Location (m)

P
ac

ke
t E

rr
or

 R
at

e

Src Dest

MHOP
AF−GH

NC
DF
AF

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−2

10
−1

Relay Location (m)

P
ac

ke
t E

rr
or

 R
at

e

Src Dest

MHOP
AF−GH

NC
DF
AF

(b) TGn B Channel

Figure 6.26 : Packet error rates for linear topology QPSK modulated payloads and
18 m SD separation.

148

−10 −5 0 5 10

10
−1

Relay Location (m)

P
ac

ke
t E

rr
or

 R
at

e

Src Dest

MHOP
AF−GH

NC
DF
AF

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−1

Relay Location (m)

P
ac

ke
t E

rr
or

 R
at

e

Src Dest

MHOP
AF−GH

NC
DF
AF

(b) TGn B Channel

Figure 6.27 : Packet error rates for linear topology 16-QAM modulated payloads and
18 m SD separation.

−10 −5 0 5 10

10
−6

10
−5

10
−4

10
−3

10
−2

Relay Location (m)

B
it

E
rr

or
 R

at
e

Src Dest

MHOP
AF−GH

NC
DF
AF

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−6

10
−5

10
−4

10
−3

10
−2

Relay Location (m)

B
it

E
rr

or
 R

at
e

Src Dest

MHOP
AF−GH

NC
DF
AF

(b) TGn B Channel

Figure 6.28 : Bit error rates for linear topology QPSK modulated payloads and 18 m
SD separation.

149

−10 −5 0 5 10

10
−4

10
−3

10
−2

Relay Location (m)

B
it

E
rr

or
 R

at
e

Src Dest

MHOP
AF−GH

NC
DF
AF

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−4

10
−3

10
−2

Relay Location (m)

B
it

E
rr

or
 R

at
e

Src Dest

MHOP
AF−GH

NC
DF
AF

(b) TGn B Channel

Figure 6.29 : Bit error rates for linear topology 16-QAM modulated payloads and 18
m SD separation.

6.4.3 Observations

We can make a few observations from these results. It is clear that the PER per-

formance of DF exceeds that of all other schemes. This holds true for every relay

position, channel model and modulation rate. The peak performance improvement

with DF is significant. Consider Figure 6.21(a), which shows PER for QPSK modu-

lated payloads in flat fading. The best PER for DF is 8.5 · 10−4 (at location 1.2 m),

nearly 45× better than the corresponding PER of 3.8 ·10−2 for NC. This is a dramatic

improvement. That this peak improvement occurs with the relay between the source

and destination makes sense. In this regime, performance of the SR and RD links is

balanced, allowing the relay to deliver the maximum possible assistance.

The AF curves are somewhat less impressive than DF, but still consistent with

expectations. The linear topologies highlight an important difference between AF

and DF. Both schemes use the same rule to determine when to cooperate (successful

150

reception of a packet). However, the amount of help each provides is different. For

DF, the quality of the relay transmission is determined by the accuracy of its CFO

estimate. As shown in Section 3.7.5, the performance of our estimator is very good at

mid-to-high SNR, and degrades seriously only at very low SNR. For AF, the quality

of its transmission is determined by the source-relay channel. A weak channel results

in a noisy relay transmission. It is clear from our results that as the relay moves

away from the source, the rate of degradation in captured waveform quality (for AF)

significantly outpaces that of the CFO estimate (for DF).

In terms of PER, DF, and in most cases AF, outperform simple multi-hop. This

is a clear demonstration of the benefits of diversity. Multi-hop provides no diversity

improvement, succeeding only when two channels (SR and RD) are both able to

successfully convey a packet. As expected, cooperation provides actual diversity,

delivering packets when any combination of the SD and RD transmissions succeeds.

These experiments highlight the importance of interpreting BER and PER to-

gether. For example, note the unusual BER curves for multi-hop in Figure 6.29.

Viewed in isolation, the BER performance of multi-hop dramatically exceeds all other

schemes. But recall from Section 5.6 that only transmissions which end in the Bad

Payload state at the destination contribute errors to the BER calculation. In other

words, transmissions which are not detected or which end in the Bad Header state

do not count towards BER. In the multi-hop scheme the destination can only re-

ceive packets from the relay, and the relay only transmits packets it receives from the

source with zero errors. When the relay is far from the source it will only occasion-

ally receive error-free packets. But if it is near the destination, it will successfully

re-transmit these occasional packets with high probability. Thus, the multi-hop BER

appears to be very good when the relay is near the destination, but the overall per-

151

formance is actually very poor. This is clearly demonstrated by the corresponding

PER curves for multi-hop (Figure 6.26, for example) which consistently show poor

multi-hop performance when the relay is near the destination.

Finally, the relative performance of the two linear topologies is consistent. As

expected, given the longer distances involved, the overall error rates are higher in the

topology with the larger source/destination separation.

6.5 Analysis of Performance Bottlenecks

Overall the results of our experiments are very encouraging. In every experiment,

there are topologies where physical layer cooperation provides significant performance

gains. The overall performance of the transceiver varies as expected with channel

statistics, average SNR and modulation rate.

However, a few aspects of the overall performance results presented in Sections 6.2-

6.4 merit further investigation. Specifically, we seek to understand the underlying

causes for performance limitations observed in our PER and BER results. These

limitations manifest as error floors, regimes where performance no longer improves

with increasing SNR. This section presents discussions and additional experiments

exploring three underlying causes of error floors in our results.

6.5.1 CFO Pre-Correction Errors

Consider the PER curves in Figure 6.3(a) for co-located source/relay and QPSK

modulation. In the mid-SNR region, the cooperative schemes are improving with a

slope of ≈2 (2 orders of PER improvement per 10 dB SNR increase), and the non-

cooperative curve has slope ≈1. These slopes are a clear demonstration of diversity

gain in our system. At the highest SNRs, however, the AF and DF curves begin to

152

flatten out. This behavior for AF is explored in Section 6.5.3 below.

For the error floor in DF, recall the processes discussed in Section 3 for estimating

and pre-correcting CFO at the relay. Specifically, refer to Figure 3.27, which shows

the distribution of the relay’s CFO estimation error as a function of packet length and

SNR. The PER curves in Figure 6.3(a) (for full-length QPSK packets) correspond to

the “120 syms” error curve in Figure 3.27.

The CFO estimation error curves in Figure 3.27 were generated via the channel

emulator with a static channel model. The PER curves use fading channel models. For

the flat fading results (the (a) subfigures), the channel realizes a random instantaneous

amplitude. Each random amplitude corresponds to some point on the X-axis in the

CFO estimation plot. In other words, the quality of the relay’s CFO estimate varies

along with the source-relay channel, providing higher variance estimates for lower

channel magnitudes.

We verify this with an experiment similar to the one used for Figure 3.27. As in

that experiment, two nodes share an RF reference clock, fixing the actual CFO at

zero. The source node applies a known CFO of 305 Hz to every transmission; the

destination receives each packet and records its frequency domain CFO estimate (the

time domain CFO estimator is disabled). In this experiment, the emulator applies

frequency flat fading.

Using WARPnet, we record the received power, CFO estimate and receiver out-

come (good/bad) for every packet. The results are shown in Figure 6.30, which shows

a 2-D histogram of the probability of each combinations of receive power and CFO

estimation error. This plot includes only data from packets received with no errors,

corresponding to those receptions which a DF relay would re-transmit. Note that the

probabilities (as colors) are on a log scale. First, observe the spread of receive powers

153

Rx Power (dBm)

CF
O

 E
st

im
at

e
Er

ro
r (

Hz
)

Distribution of CFO Est Error vs. Rx Power

−80 −70 −60 −50 −40

20

40

60

80

100

120

10^−5

10^−4

10^−3

10^−2

10^−1

10-5

10-4

10-3

10-2

10-1

Pr
ob
ab
ilit
y

Figure 6.30 : Probability distribution of frequency domain CFO estimation error vs.
Rx power, for full-length packets in a flat fading channel.

spanning 40 dB, with lower powers being less likely. This distribution represents the

fading statistics of the emulator’s channel model. Second, note the range of CFO

estimation errors, and compare these to the PER/BER curves in Figure 3.22. Any

estimation error is bad, but errors larger than even ≈50 Hz degrade performance. It

is clear from these results that our CFO estimator provides very good estimates for

moderate-to-high SNRs. But at low SNR there is a higher probability of the esti-

mator providing CFO values with errors large enough to degrade performance at the

destination.

This observation presents an interesting dilemma. One of the attractive properties

of decode and forward relaying is the isolation between the source-relay and relay-

destination channels. In AF, for example, the re-transmitted waveform preserves

whatever degradation it suffered along the SR channel. In an ideal DF relay, the

SR channel would have no impact on the quality of the relay’s transmission to the

154

destination; the relay strips away any received noise and channel degradations by

re-generating a fresh waveform for transmission.

In our implementation, however, the relay applies CFO pre-correction to its trans-

mission, and the CFO value it uses can be degraded by the SR channel. In a sense, this

process allows SR channel effects to “leak through” to the DF relay’s transmission.

In the worst case, the relay would transmit with a bad CFO estimate and cause a

packet error when none would otherwise have occurred. Thankfully, our experiments

demonstrate this is a very rare event, as shown by the significant PER improvement

with DF over NC in every topology. However, this effect will cause error floors at

high average SNR, where packet losses due to rare CFO estimation errors begin to

dominate.

6.5.2 Dynamic Range of Channel Frequency Response

In each PER and BER plot for all schemes in the two triangular topologies there

is a clear floor in performance when using the TGn B channel model. The floor’s

value varies with modulation rates and cooperative schemes, but the general shape is

unmistakable. The same error floors are not apparent in the flat fading results which,

except for the channel model, use identical experimental parameters. It is clear that

some difference between the TGn A (flat fading) and TGn B channels is dominating

performance at high SNR.

The only difference between the TGn A and B channels is the power delay pro-

file of the models. The TGn A model has a single tap, resulting in a flat frequency

response for all channel states, while TGn B has 9 taps spread over 80 nsec. As the

instantaneous tap values vary with time, they generate frequency selective fading.

In order to attribute packet errors (the different result between experiments) to fre-

155

quency selectivity (the only parameter difference between experiments), we need a

way to associate packet errors with instantaneous channel states.

Unfortunately there is no way to extract instantaneous channel response from the

emulator in real-time. It is possible to pause the emulator and see the instantaneous

channel impulse response (time domain dual of the frequency response). However this

display is only shown in the Azimuth GUI and not made available via the emulator

API. Further, pausing and restarting the emulator requires ≈5 seconds, even when

done via the API. To do this for each packet in an experiment with hundreds of

thousands of transmissions is infeasible.

Instead, we created a framework for recording the OFDM receiver’s channel esti-

mates in real-time. This framework utilizes an extension to the PHY which stores a

copy of the receiver’s channel estimates in a memory-mapped buffer. When a packet

is received, the node transmits an Ethernet packet containing the channel estimates,

received state (good/bad) and other PHY data (RSSI, AGC gain selection and CFO

estimates)1. This packet is received by a helper application running on a PC which

writes it to a log file. The helper application is controlled via WARPnet so that the

log files can also record the experimental parameters per packet.

When the experiment is complete, we load the log files into MATLAB for analysis.

The logs contain frequency domain channel estimates per subcarrier for every packet

received during the experiment. We start by calculating the dynamic range of the

channel frequency responses across subcarriers. We define dynamic range as the

difference in powers between the strongest and weakest subcarrier estimates. For NC

packets, we consider only the source-destination estimates. For AF/DF packets, we

1This is the same framework we use for all of the experiments for CFO estimator characterization
presented in Chapter 3.

156

first sum the powers of the estimates in each subcarrier before calculating the range.

Finally, we group observations by outcome (good payload, bad payload or bad header)

and channel dynamic range.

We use this framework for an experiment of the co-located source/relay topology.

The results are shown in Figure 6.31. Each of the nine plots presents data from a

cooperative scheme (NC/DF/AF) and attenuation (12/4/0 dB). In each plot, the

X-axis is channel dynamic range. This is a linear scale where small values represent

flatter channels. The Y-axis is probability. Each plot has three curves, one for each

reception outcome. Each data point represents the probability of a packet being

received with a given outcome and channel dynamic range.

A few trends are clear. First, for every scheme and SNR the good payload curve

dominates at low dynamic ranges; flatter channels result in fewer errors. The opposite

holds as well: higher dynamic ranges lead to more packet errors, with the worst

outcomes (bad header) dominating at the highest dynamic ranges.

These results align perfectly with the PER/BER floors we observed earlier. In

our experiments, the probability of a deep channel null (i.e. high dynamic range) is

independent of average SNR. The emulator generates and applies its random tap gains

before it applies the output attenuation. At low SNR, additive noise dominates the

BER/PER performance. As SNR increases, the PER/BER improve until reaching a

floor defined the probability of a deep null in the channel model. Beyond this point,

higher SNRs will not improve performance, as the fixed probability of a channel null

dominates.

To understand how a null can cause errors at high SNRs, recall the flow of a

received waveform into our receiver as illustrated in Figure 6.32. The MAX2829

downconverts the RF waveform to baseband, applying gain in two stages as directed

157

5 10 15

10
−3

10
−1

NC | S−D/R−D Atten 12dB
P

ro
ba

bi
lit

y

5 10 15

10
−3

10
−1

DF | S−D/R−D Atten 12dB

5 10 15

10
−3

10
−1

AF | S−D/R−D Atten 12dB

5 10 15

10
−3

10
−1

NC | S−D/R−D Atten 4dB

P
ro

ba
bi

lit
y

5 10 15

10
−3

10
−1

DF | S−D/R−D Atten 4dB

5 10 15

10
−3

10
−1

AF | S−D/R−D Atten 4dB

5 10 15

10
−3

10
−1

NC | S−D/R−D Atten 0dB

Chan Freq Response Range

P
ro

ba
bi

lit
y

5 10 15

10
−3

10
−1

DF | S−D/R−D Atten 0dB

Chan Freq Response Range
5 10 15

10
−3

10
−1

AF | S−D/R−D Atten 0dB

Chan Freq Response Range

Good Payload Good Header/Bad Payload Bad Header

Figure 6.31 : Packet success and error rates for NC/DF/AF as a function of channel
frequency response dynamic range, for full length 16-QAM payloads in the co-located
source/relay topology

by the AGC core. The AGC selects gains so that the MAX2829 baseband analog

outputs fill the dynamic range of the ADCs, whose digital outputs are fed into the

OFDM receiver.

Our OFDM receiver is implemented entirely with fixed point arithmetic, a stan-

158

RF Receiver

ADCs OFDM Rx

Gain Control

X
~

Figure 6.32 : Block diagram of the signal chain from the antenna to OFDM receiver.
The RF receiver in the MAX2829 applies gain in two stages, with gains selected by
the OFDM receiver’s AGC block.

dard practice for FPGA designs. For our design flow, this is a requirement; Xilinx

System Generator only supports fixed-point data types for hardware implementa-

tion. One limitation of using fixed vs. floating point processing is the smaller range

of values which can represented in a given datatype.

The combination of quantization, due to sampling at the ADC, and fixed-point

processing in the FPGA cause the error floor difference between our frequency flat

and selective fading results is tied directly to this range limitation.

Most of the processing in an OFDM receiver takes place in the frequency domain,

after the received time domain waveform is passed through an FFT. It is critical that

the arithmetic blocks inside the FFT not overflow. Internally, the FFT core wraps on

overflow, which corrupts the full transform in progress. We set the target amplitude

at the output of the AGC to fill (but not exceed) the numerical range of the FFT

core I/O.

In frequency selective fading channels, the channel response will vary in magni-

tude across OFDM subcarriers. In the OFDM receiver, this means the magnitude of

the values output from the FFT will vary according to the frequency response of the

channel. In our OFDM receiver, channel estimates are calculated per-subcarrier, and

symbols are equalized by inverting the channel (i.e. zero-forcing). For channels with

159

large amplitude variations across frequency, the channel estimates for the “weakest”

channels will be very small, imprecise values. When used by the equalizer this impre-

cision is exaggerated, increasing the likelihood of symbol errors. Thus, in our receiver,

we expect the overall performance to be dominated by the weakest subcarriers. Since

the probability of a week subcarrier (relative to other subcarriers) is independent of

the average SNR, the probability of errors due to weak subcarriers is capped and, at

high SNR, will dominate.

We designed an experiment to confirm this expectation. This experiment seeks to

test whether a channel frequency response with large dynamic range (peak-to-peak

amplitude) causes packet errors, independent of average SNR. This test uses a feature

of the Azimuth emulator which allows it to “freeze” its current state. In this mode,

the emulator continues applying the latest channel coefficients, but stops updating

the coefficients, essentially extending its coherence time indefinitely.

In order to isolate a channel realization with high dynamic range, we used two

WARP nodes connected to the emulator. The channel model was set to TGn D

with the minimum velocity (0.012 km/h). This setup results in very slow changes to

channel coefficients, with coherence times of multiple seconds. We then started the

emulator and a one-antenna Alamouti link between the WARP nodes. By monitoring

the PHY’s bad header output, we could watch for channel conditions resulting in

high packet error rates. It did not take long for the emulator to impose a channel

with a deep null, indicated by consistent packet errors at the destination. We froze

the emulator state but allowed the nodes to continue running. Using WARPnet, we

captured channel estimates for every detected packet, and checksum statuses for every

detected header and payload.

Figure 6.33 shows the captured channel estimates from this test. The X-axis is

160

subcarrier index; only the 52 occupied subcarriers (indices [-26,-1] and [1,26]) generate

estimates. The Y-axis is the magnitude of the complex channel coefficient on a log

scale. Each trace (there are thousands) is the frequency domain channel estimate

extracted from a single received packet. Three distinct groupings are apparent. These

are the result of the AGC choosing one of three gains, with each choice separated by

2 dB. This ±1 gain step is standard behavior for the AGC.

Subcarrier
-30 -20 -10 10 20 300

C
ha

nn
el

 M
ag

ni
tu

de
 (d

B)

-10

-15

-20

-25

-30

-35

-40

Figure 6.33 : Channel estimates for high-dynamic range channel response.

After isolating an appropriate channel response, we then swept attenuation (av-

erage SNR) between the source and destination. From the receiver’s perspective, it

must apply higher gain in the AGC for higher attenuations, but the impact of the

channel response should be consistent across average SNRs. The test confirmed this.

The PER was 100% for all average SNRs when this channel response was applied.

161

6.5.3 Bit Error Densities

Consider the PER plots for the co-located source/relay topology in Figures 6.3- 6.4. In

general, the DF and AF curves show significant PER improvement over NC at nearly

every point. The one deviation from this general observation is for PER of 16-QAM

payloads in a flat fading channel (Figure 6.4). Notice that at the two highest SNRs

(furthest to the right) the AF curve shows worse packet error rates than NC. Compare

these points to the corresponding BER values (Figure 6.6). Here, both cooperative

schemes significantly outperform non-cooperative. This disparity between PER and

BER requires deeper investigation.

We start by analyzing curves corresponding to each kind of packet error. Recall

from Section 4.1.5 that for every transmission, the OFDM receiver terminates in one

of four states: no detection, bad header, bad payload or good payload. The first

three count as packet errors and our experiment design allows each to be tabulated

separately. Figure 6.34 presents four curves: the overall PER (a) and the three

contributing sources of packet errors (b)-(d).

It is easy to spot which type of packet error dominates the PER in various regions.

At low SNR (to the left), all three schemes are dominated by missed detections (d)

and bad headers (c). In this region only a few packets end in the bad payload state,

as the receiver terminates before attempting to decode the payloads. As the SNR

increases (moving right), more bad payload events occur. At the mid-to-high SNRs

the bad payload curve (b) is nearly identical to the overall PER, indicating in this

region payload bit errors are the primary source of packet errors.

This observation leads us to dig deeper into the distribution of bit errors at the

highest SNRs. To this end, we extend our experimental setup with a new bit error

calculator. Recall from Section 5 that we use a C program running on a PC to

162

−35 −30 −25 −20 −15 −10 −5 0

10
−2

10
−1

10
0

SD and RD Attenuation

P
ac

ke
t E

rr
or

 R
at

e

NC
DF
AF

(a) PER

−35 −30 −25 −20 −15 −10 −5 0

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF

(b) Bad Payload

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF

(c) Bad Header

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF

(d) Missed Detection

Figure 6.34 : Packet error rate (a) broken down into contributing errors (b)-(d) for
full length 16-QAM payloads in the co-located source/relay topology.

calculate the BER per packet transmission. For this investigation, we use an extended

version of this program which both calculates the BER and logs the index of each bit

error in every packet received. The extended program still integrates with WARPnet,

so we can attribute each bit error to a given combination of experimental parameters.

Using this new experimental setup, we re-test the channel/modulation/topology

163

combination above. We run shorter trials here, as the bit error logs grow quickly.

From these logs (864 MB in total) we can extract the distribution of the number of

bit errors per packet, as shown in Figure 6.35.

We illustrate this distribution two ways. The first is a standard histogram (a),

with each bin showing the probability of a transmission being received with precisely

that number of bit errors for each scheme (NC/DF/AF). The first bin corresponds to

zero errors; the inset shows the tops of these bars. The nearly identical values align

well with our overall low probability of packet errors for all three schemes. The last

bin represents all packets received with 20 or more errors (essentially the sum of all

bins past 19 in a full histogram).

We can make a few key observations here. First, in the rightmost bin, the distribu-

tions of errors among schemes differ significantly. A non-cooperative transmission is

much more likely to experience many bit errors than with either cooperative scheme.

This maps well to our intuition about diversity; a deep fade will cause many bit er-

rors, but simultaneous deep fades on two independent channels are unlikely. Second,

notice the difference between schemes in the lower bins. Here, AF shows a much

higher probability of delivering packets with only a few bit errors than NC or DF.

This is especially clear in Figure 6.35(b), which shows the same distribution plot-

ted against cumulative bit error counts per packet. Here, each X-axis value is a bit

error count; each data point is the probability of a packet being received with at least

that many errors. Thus, mass to the right indicates a higher probability of packets

with many errors; mass to the left maps to higher probabilities of packets with just

a few errors. Notice the AF and NC curves, which cross for bit error counts beyond

1. These results clearly demonstrate that the higher PER with AF at high SNR is

due to bad packets which are almost good. Amplify and forward succeeds in filling

164

0 5 10 15 20

10−4

10−3

10−2

10−1

100

Number of Bit Errors per Packet

Pr
ob

ab
ilit

y

NC
DF
AF

0 5 10 15 20

10−4

10−3

10−2

10−1

100

Number of Bit Errors per Packet

Pr
ob

ab
ilit

y

NC
DF
AF

0 5 10 15 20

10−4

10−3

10−2

10−1

100

Number of Bit Errors per Packet

Pr
ob

ab
ilit

y

NC
DF
AF

0 5 10 15 20

10−4

10−3

10−2

10−1

100

Number of Bit Errors per Packet

Pr
ob

ab
ilit

y

NC
DF
AF

>

(a) (b)

Figure 6.35 : Distribution (a) and cumulative distributions of number of bit errors
per packet for co-located source/destination/relay topology and full length payloads
modulated at 16-QAM.

in deep fades, but it does so with “noisy” power.

The bit error distribution curves above present data only for the highest SNR

point in the co-located source/relay topology. Our experiment actually generates bit

error logs for every point. An intuitive way to view all these results is as pseudo-

PER curves, which represent the numbers of packets received with more than a given

number of bit errors. This is equivalent to re-defining a successful packet’s threshold

for bit errors to something higher than zero.

Figure 6.36 shows these curves for four bit error thresholds. Plot (a) is normal

PER, where any bit error causes a packet error; plots (b)-(d) show PER for thresholds

of 1, 2 and 20 bit errors per packet. Notice how the AF curve moves below the NC

curve very quickly, while the NC curve improves only slightly. This reaffirms our

observations above, that the PER for AF at high SNR is dominated by packets that

are “almost good.”

165

−35 −30 −25 −20 −15 −10 −5 0
10

−4

10
−3

10
−2

10
−1

10
0

SD/RD Attenuation

P
se

ud
o

P
E

R

Packet Error:
>0 bit errors

NC
DF
AF

(a)

−35 −30 −25 −20 −15 −10 −5 0
10

−4

10
−3

10
−2

10
−1

10
0

SD/RD Attenuation

P
se

ud
o

P
E

R

Packet Error:
>1 bit error

NC
DF
AF

(b)

−35 −30 −25 −20 −15 −10 −5 0
10

−4

10
−3

10
−2

10
−1

10
0

SD/RD Attenuation

P
se

ud
o

P
E

R

Packet Error:
>2 bit errors

NC
DF
AF

(c)

−35 −30 −25 −20 −15 −10 −5 0
10

−4

10
−3

10
−2

10
−1

10
0

SD/RD Attenuation

P
se

ud
o

P
E

R

Packet Error:
>19 bit errors

NC
DF
AF

(d)

Figure 6.36 : Pseudo packet error rates for co-located source/relay topology with
1416 byte, QPSK modulated payloads, for four different bit error thresholds.

166

Chapter 7

Future Work

7.1 Physical Layer Cooperation in a Network

Our work thus far has focused on a detailed performance characterization of our

cooperative physical layer implementation. Our primary metrics (packet and bit

error rates) are designed to capture the expected outcome of a packet transmission

under various conditions. But these metrics and, our characterization in general, do

not consider under what conditions a node should transmit. This determination is

generally part of the Medium Access Control (MAC) layer, a rigorous study of which

falls outside the scope of this work. However, as discussed below, our PHY design

has already enabled some early results in studying ways to exploit physical layer

cooperation at the MAC layer.

7.1.1 Early MAC Results

In collaboration with fellow graduate student Chris Hunter, we designed, implemented

and evaluated the Distribution On-demand Cooperation (DOC) MAC protocol.

The DOC protocol seeks to exploit physical layer cooperation to improve the relia-

bility of MAC re-transmissions. Specifically, it aims to use cooperative re-transmissions

to combat packet losses due to channel effects (as opposed to losses due to contention).

The protocol is fully distributed, designed to coordinate the behavior of nodes with

no central synchronization source.

167

The DOC protocol employs an explicit negative acknowledgement (NACK) packet,

transmitted by a destination whenever channel conditions prevent the successful de-

coding of a packet payload. The NACK serves two purposes. First, it communicates

the destination’s MAC state to the source, similar in effect to a timeout (missing

ACK) in CSMA. Second, the NACK functions as a trigger for a potentially coopera-

tive re-transmission. If the source node and a participating relay receive the NACK

they will both re-transmit the original packet using either AF or DF.

The NACK serves both as the re-transmission trigger and as a means for the

cooperating nodes to establish sample-level synchronization for their transmissions.

Our DOC implementation employs the PHY’s auto-response subsystem discussed in

Section 4.2 at both the source and relay nodes. This design provides NACK-to-re-

transmission turnarounds at the source and relay that are fast and, more importantly,

uniform.

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 800
Relay Location (meters)

10 20 30 40 50 60 70 80
4.0

2.5

3.0

3.5

4.0

T
h
ro

u
gh

p
u
t

(M
b
p
s)

S D

2x1 MISO

SISO

DOC

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 800
Relay Location (meters)

10 20 30 40 50 60 70 80
4.0

2.5

3.0

3.5

4.0

T
h
ro

u
gh

p
u
t

(M
b
p
s)

S D

2x1 MISO

SISO

DOC

Figure 7.1 : Throughput improvement using DOC in a three node network, tested
with a fixed source/destination and a relay at various points along the line connecting
them.

Our current DOC implementation is built on a previous generation of the PHY

which supports only amplify and forward cooperation. Even with just AF DOC

demonstrates significant performance gains. Our approach to the initial evaluation

of DOC uses techniques very similar to those discussed in Section 5. Three WARP

168

nodes are inter-connected via the Azimuth channel emulator and are controlled by

the WARPnet framework.

The primary metric in our evaluation is throughput, measured under the condi-

tions of a fully-backlogged source node with a dedicated relay which transmits only

when cooperating with the source on NACK-triggered re-transmissions. Figure 7.1

shows results from one topology, demonstrating a clear throughput improvement when

using DOC.

A complete discussion of the DOC protocol and additional experimental results

are provided in [46].

7.1.2 Rate Adaptation

In a wireless stack built on a physical layer transceiver capable of multiple trans-

mission rates, higher network layers must select a rate for every transmission. For

example, IEEE 802.11a specifies eight physical layer data rates, realized by combina-

tions of four modulation rates and three coding rates. The standard does not specify

a rate selection algorithm; the link layer is free to choose any supported rate per

packet. Various rate adaptation algorithms have been proposed [47, 48]; a number

have even been evaluated experimentally using an earlier generation of the WARP

OFDM design (before cooperation was implemented) [49].

In a non-cooperative transceiver each data rate has some measurable performance

under given propagation conditions. The link layer uses knowledge of the available

rate/reliability options to make its per-packet rate decisions. With physical layer

cooperation, however, different cooperative schemes can provide higher performance

for a given data rate, but at the cost of employing a relay node. As discussed in

Section 5.6, the actual cost of delivering a packet to the relay depends on the MAC

169

protocol itself. Thus, a cooperation-aware rate adaptation algorithm would be tightly

coupled to the link layer protocol.

For example, consider the packet error rate curves in Figure 7.2. These plots show

the PER results for the co-located source/relay topology in frequency flat (a) and

frequency selective (b) fading. These curves are drawn from the same experiment as

Figures 6.7-6.8). Here we show curves for just non-cooperative (NC) and DF schemes,

but with results for both QPSK and 16-QAM modulation on the same axes.

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

10
0

SD and RD Attenuation (dB)

P
ac

ke
t E

rr
or

 R
at

e

NC QPSK
DF QPSK
NC 16−QAM
DF 16−QAM

(a) Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

10
0

SD and RD Attenuation (dB)

P
ac

ke
t E

rr
or

 R
at

e

NC QPSK
DF QPSK
NC 16−QAM
DF 16−QAM

(b) TGn B Channel

Figure 7.2 : Packet error rates for NC and DF schemes in co-located source/relay
topology with 692 byte payloads modulated with QPSK and 16-QAM.

Notice that at high SNR in both fading models, the performance of DF with

16-QAM exceeds that of NC with QPSK. This presents an interesting example for

rate adaptation in a network of cooperative nodes. Imagine nodes which use a MAC

protocol similar to that of 802.11, but can employ physical layer cooperation for

MAC re-transmissions (as in the DOC implementation discussed above). If a source

node unsuccessfully attempts an initial transmission at 16-QAM, it could choose from

four options: (a) re-transmit at 16-QAM, (b) fall back and re-transmit with QPSK,

170

(c) trigger a cooperative re-transmission using a nearby DF relay at QPSK or (d)

at 16-QAM. Each option has an associated cost; re-transmission with QPSK would

require more time, increasing the temporal “footprint” of the transmission. A cooper-

ative re-transmission similarly extends the footprint spatially. The cooperation-aware

link layer rate adaptation algorithm would need to balance these temporal and spatial

costs with the expected performance of each option, using knowledge of the propa-

gation environment and data like that in Figure 7.2. We expect our physical layer

design, experimental methodologies and performance measurements will prove useful

to researchers undertaking the design of such algorithms.

7.1.3 Open Questions

Our implementation of DOC is just a first step in understanding the potential benefits

of employing physical layer cooperation in a real network. Future work will need to

address many open questions. For example, our work on DOC demonstrates the

potential gains with cooperation but does not address the costs. The use of a relay

expands the footprint of a given packet transmission. In a multi-flow network, it is

easy to envision topologies where a relay’s transmission helps one flow but interferes

with many others. Understanding this tradeoff and designing MAC protocols to

optimize it will require considerable effort.

Our cooperative physical layer is designed explicitly to enable novel MAC imple-

mentations. The WARPnet framework already supports arbitrarily large networks

and our scripts could easily be adapted for over-the-air experiments with many nodes.

We anticipate these results from our work will help facilitate ongoing efforts by others

to study the MAC level implications of physical layer cooperation.

171

7.2 Transceiver Extensions

7.2.1 Temporal Combining

As discussed in Chapter 2, our cooperative implementation operates in two time slots.

The source node transmits its packet to the relay in the first slot, then the source

and relay cooperatively transmit the packet in the second. In this implementation

the destination only receives transmissions in the second slot. As discussed in Chap-

ter 5, our experiments focus on spatial combining in order to isolate and quantify the

performance gains possible with simultaneous transmissions by cooperating nodes.

Additional performance improvements would be possible if the destination oper-

ated in both time slots. The second time slot could be avoided altogether in cases

where the destination successfully receives the source’s transmission in the first (this

is the goal in the DOC protocol, discussed in Section 7.1.1 above). In cases where

the destination cannot decode the first transmission it could still perform some sort

of combining of its receptions from both slots to improve its chance of decoding the

payload.

A few other cooperative implementations use temporal combining. For example,

the systems described in [7, 10] only implement temporal combining; neither employs

spatial combining via simultaneous source/relay transmissions.

Adding combining across time slots would clearly provide a performance gain in

our design, but it poses a number of implementation challenges. The combining pro-

cess would likely be implemented in the frequency domain as part of the equalization

and Alamouti combining blocks. This approach would require that the receiver record

the output of its equalizer (i.e. soft symbol values) in the first time slot so they could

be combined symbol-by-symbol during a subsequent reception. It would also need to

172

store some metric of reliability per subcarrier, like a channel coefficient magnitude.

The memory requirements here would be significant, comparable in size to the wave-

form buffer used with AF. There would also be synchronization challenges in assuring

a given reception matches a previous one and should be combined with the recorded

symbols and metrics. At a minimum, this synchronization would require new logic in

the receiver to match header fields (source/destination addresses, sequence number,

etc.) across receptions.

Each of these challenges is tractable, but non-trivial. It would be important to

study the potential benefit of using spatial and temporal combining together before

extending our design to support both.

7.2.2 Error Correcting Codes

Another useful addition to our physical layer design would be an error correcting code.

Recognizing the substantial effort required to add coding to our design, we judged an

uncoded PHY sufficient for our experiments. However, channel coding would clearly

improve performance, as it does in all modern wireless standards. Well understood

architectures exist for FPGA implementations of common codes (convolutional codes,

for example). Extending our PHY with such a code is certainly tractable, but would

require care to preserve the PHY features necessary for cooperation (auto-responders,

frequency domain CFO estimation, etc.).

We can offer one observation relevant to coding from our results with an uncoded

PHY. Recall from Section 6.5.3 our description of a “pseudo-PER” metric, based on

analyses of the distribution of bit error densities in packets employing various coop-

erative schemes. These results demonstrated a stark difference in bit error patterns

between non-cooperative and cooperative receptions in some topologies. The differ-

173

ence was most pronounced for AF receptions, where in certain topologies the majority

of packet errors were the result of just a few bit errors (often just one).

The three pseudo-PER plots in Figure 6.36(b)-(d) can be interpreted as the PER

which would result if the PHY employed hypothetical codes which could guarantee

correction of 1, 2 or 20 bit errors per packet. A code which could correct 20 errors,

for example, would improve the PER of all three schemes, but would provide an

especially large improvement for AF and DF (see Figure 6.36(d)).

Of course, most codes cannot assure correction of N errors. However, our work

would still provide a useful starting point for studying the impact of error correcting

codes in a real cooperative system. We developed the bit error logging and analysis

tools discussed in Section 6.5.3 to better understand the performance of our PHY.

This same framework would be very useful to researchers seeking to understand the

expected results of employing various coding techniques in a cooperative system.

7.2.3 Full Duplex

A final promising extension to our implementation would be an exploration of physical

layer cooperation among full duplex wireless nodes. Most wireless systems which

transmit and receive in the same band employ half duplex communication. This is

the due to the very high ratio of received powers between transmissions from nearby

(local to the node) and remote (at another node) antennas.

However, recent results [50, 51] have demonstrated that full duplex links are fea-

sible using commodity hardware. One of these projects is here at Rice, led by fellow

graduate student Melissa Duarte, and is using WARP for the experimental evaluation

of full duplex techniques. In this design, an additional WARP Radio Board is used

to generate an RF signal designed to cancel the node’s own transmission. This signal

174

is combined at RF with the signal from the receive antenna and the sum is fed to

another Radio Board for downconversion. Careful design of the cancellation signal

can reduce the ratio of received powers significantly, making it possible to fully cancel

local interference digitally after downconversion. Early results are promising, demon-

strating that a combination of RF and digital baseband cancellation can enable full

duplex links in a wide range of practical topologies.

An extension of this full duplex work to a real-time, wideband system poses some

very interesting opportunities for physical layer cooperation. The two time slot design

of our cooperative implementation is rooted in the inability of a relay node to receive

and transmit simultaneously. In theory, a full duplex relay could initiate a cooperative

transmission while the source node’s initial transmission is ongoing.

Realizing such a relay in practice poses a number of significant implementa-

tion challenges. For example, there is non-zero latency through the signal chain

of RF downconversion→ADC→FPGA→DAC→RF upconversion. Even with no pro-

cessing in the FPGA, this latency is hundreds of nanoseconds, equivalent to tens of

sample periods at 10 MHz bandwidth. Occupying a substantial fraction of an OFDM

symbol, this delay would preclude use of the distributed Alamouti code as currently

implemented in our transceiver.

Another challenge involves calibration of the effective channel response between

transmit and receive antennas for use in constructing the RF cancellation signal.

Current full-duplex implementations operate with a narrow signal bandwidth. The

calibration and cancellation schemes would need to be adapted for use with a wide-

band (possibly frequency selective) channel between the Tx/Rx antennas.

A final complication arises when considering how to adapt various cooperative

schemes (AF and DF, for example) to a full duplex relay. A full duplex AF relay

175

is straightforward to describe. However, an implementation which requires active

generation of an RF cancellation signal requires far more processing than simply

buffering and retransmitting a waveform. If the cancellation signal is constructed

in the frequency domain (the natural place in an OFDM system), even AF relay-

ing would require a modified OFDM transceiver. If constructed in the time domain,

the relay would need channel impulse response estimation and inversion systems not

typically used in OFDM. A DF relay would have similar complications, having to

generate two waveforms per reception (one for transmission, one for cancellation) via

a single OFDM transmitter. Further, the cancellation waveform would require mul-

tiplying each subcarrier by a correction value derived during the Tx/Rx calibration

process. Such a transmitter bears more similarity to beamforming than the Alamouti

STBC and would require modifications to a large fraction of our OFDM transmitter

implementation.

These are all very interesting problems whose solutions could have significant

impact. None strike us as insurmountable, but each will require careful analysis,

design and experimental verification to realize a real-time, full duplex cooperative

system. We anticipate our current FPGA design flow, transceiver implementation

and experimental framework will prove useful as these efforts are undertaken.

176

Appendix A

Additional Plots for Full Transceiver

Characterization

This appendix includes additional plots from our experiments. The overall PER and

BER are presented in Chapter 6. The plots below show the probabilities of each kind

of packet error, which when combined form the overall PER.

Also included below are plots indicating the probability of relay participation at

every point in the experimental topologies. These curves are all intuitive, indicat-

ing higher relay participation in regimes where the relay can more reliably decode

transmissions from the source.

177

A.1 Co-located Source/Relay Topology

A.1.1 1412 Byte Payloads

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF

(b) TGn B Channel

Figure A.1 : Probability of destination receiving packets with good headers but bad
payloads for QPSK modulation.

−35 −30 −25 −20 −15 −10 −5 0

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF

(b) TGn B Channel

Figure A.2 : Probability of destination receiving packets with good headers but bad
payloads for 16-QAM modulation.

178

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF

(b) TGn B Channel

Figure A.3 : Probability of destination receiving packets with bad headers for QPSK
modulation.

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF

(b) TGn B Channel

Figure A.4 : Probability of destination receiving packets with bad headers for 16-
QAM modulation.

179

−35 −30 −25 −20 −15 −10 −5 0
10

−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF

(b) TGn B Channel

Figure A.5 : Probability of missed detection (no energy detection or preamble corre-
lation) at the destination for QPSK payloads.

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0
10

−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF

(b) TGn B Channel

Figure A.6 : Probability of missed detection (no energy detection or preamble corre-
lation) at the destination for 16-QAM payloads.

180

−35 −30 −25 −20 −15 −10 −5 0
0.9

0.95

1

1.05

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

is
si

on

DF
AF

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0
0.9

0.95

1

1.05

SD and RD Attenuation
P

ro
ba

bi
lit

y
of

 R
el

ay
 T

ra
ns

m
is

si
on

DF
AF

(b) TGn B Channel

Figure A.7 : Probability of relay transmitting for QPSK payloads.

−35 −30 −25 −20 −15 −10 −5 0
0.9

0.95

1

1.05

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

is
si

on

DF
AF

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0
0.9

0.95

1

1.05

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

is
si

on

DF
AF

(b) TGn B Channel

Figure A.8 : Probability of relay transmitting for 16-QAM payloads.

181

A.1.2 692 Byte Payloads

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation
P

ro
ba

bi
lit

y
of

 B
ad

 P
ay

lo
ad

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.9 : Probability of destination receiving packets with good headers but bad
payloads for QPSK modulation.

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.10 : Probability of destination receiving packets with good headers but bad
payloads for 16-QAM modulation.

182

−35 −30 −25 −20 −15 −10 −5 0
10

−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.11 : Probability of destination receiving packets with bad headers for QPSK
modulation.

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.12 : Probability of destination receiving packets with bad headers for 16-
QAM modulation.

183

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.13 : Probability of missed detection (no energy detection or preamble cor-
relation) at the destination for QPSK payloads.

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.14 : Probability of missed detection (no energy detection or preamble cor-
relation) at the destination for 16-QAM payloads.

184

−35 −30 −25 −20 −15 −10 −5 0
0.9

0.95

1

1.05

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

is
si

on

DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0
0.9

0.95

1

1.05

SD and RD Attenuation
P

ro
ba

bi
lit

y
of

 R
el

ay
 T

ra
ns

m
is

si
on

DF
AF
AF−GH

(b) TGn B Channel

Figure A.15 : Probability of relay transmitting for QPSK payloads.

−35 −30 −25 −20 −15 −10 −5 0
0.9

0.95

1

1.05

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

is
si

on

DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0
0.9

0.95

1

1.05

SD and RD Attenuation

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

is
si

on

DF
AF
AF−GH

(b) TGn B Channel

Figure A.16 : Probability of relay transmitting for 16-QAM payloads.

185

A.2 Equidistant Nodes Topology

A.2.1 1412 Byte Payloads

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.17 : Probability of destination receiving packets with good headers but bad
payloads for QPSK modulation.

−35 −30 −25 −20 −15 −10 −5 0

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.18 : Probability of destination receiving packets with good headers but bad
payloads for 16-QAM modulation.

186

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.19 : Probability of destination receiving packets with bad headers for QPSK
modulation.

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.20 : Probability of destination receiving packets with bad headers for 16-
QAM modulation.

187

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.21 : Probability of missed detection (no energy detection or preamble cor-
relation) at the destination for QPSK payloads.

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.22 : Probability of missed detection (no energy detection or preamble cor-
relation) at the destination for 16-QAM payloads.

188

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

10
0

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

is
si

on

DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

10
0

Inter−node Attenuation (dB)
P

ro
ba

bi
lit

y
of

 R
el

ay
 T

ra
ns

m
is

si
on

DF
AF
AF−GH

(b) TGn B Channel

Figure A.23 : Probability of relay transmitting for QPSK payloads.

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

10
0

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

is
si

on

DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

10
0

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

is
si

on

DF
AF
AF−GH

(b) TGn B Channel

Figure A.24 : Probability of relay transmitting for 16-QAM payloads.

189

A.2.2 692 Byte Payloads

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)
P

ro
ba

bi
lit

y
of

 B
ad

 P
ay

lo
ad

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.25 : Probability of destination receiving packets with good headers but bad
payloads for QPSK modulation.

−35 −30 −25 −20 −15 −10 −5 0

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.26 : Probability of destination receiving packets with good headers but bad
payloads for 16-QAM modulation.

190

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.27 : Probability of destination receiving packets with bad headers for QPSK
modulation.

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−5

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.28 : Probability of destination receiving packets with bad headers for 16-
QAM modulation.

191

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.29 : Probability of missed detection (no energy detection or preamble cor-
relation) at the destination for QPSK payloads.

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0

10
−4

10
−3

10
−2

10
−1

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

NC
DF
AF
AF−GH

(b) TGn B Channel

Figure A.30 : Probability of missed detection (no energy detection or preamble cor-
relation) at the destination for 16-QAM payloads.

192

−35 −30 −25 −20 −15 −10 −5 0
10

−4

10
−3

10
−2

10
−1

10
0

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

is
si

on

DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0
10

−4

10
−3

10
−2

10
−1

10
0

Inter−node Attenuation (dB)
P

ro
ba

bi
lit

y
of

 R
el

ay
 T

ra
ns

m
is

si
on

DF
AF
AF−GH

(b) TGn B Channel

Figure A.31 : Probability of relay transmitting for QPSK payloads.

−35 −30 −25 −20 −15 −10 −5 0
10

−4

10
−3

10
−2

10
−1

10
0

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

is
si

on

DF
AF
AF−GH

(a) Frequency Flat Channel

−35 −30 −25 −20 −15 −10 −5 0
10

−4

10
−3

10
−2

10
−1

10
0

Inter−node Attenuation (dB)

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

is
si

on

DF
AF
AF−GH

(b) TGn B Channel

Figure A.32 : Probability of relay transmitting for 16-QAM payloads.

193

A.3 Linear Topologies

A.3.1 10.4 m SD Separation

−10 −5 0 5 10

10
−4

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

Src Dest

NC
DF
AF

MHOP
AF−GH

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−4

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

Src Dest

NC
DF
AF

MHOP
AF−GH

(b) TGn B Channel

Figure A.33 : Probability of destination receiving packets with good headers but bad
payloads for QPSK modulation.

194

−10 −5 0 5 10

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

Src Dest

NC
DF
AF

MHOP
AF−GH

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−2

10
−1

Relay Location (m)
P

ro
ba

bi
lit

y
of

 B
ad

 P
ay

lo
ad

Src Dest

NC
DF
AF

MHOP
AF−GH

(b) TGn B Channel

Figure A.34 : Probability of destination receiving packets with good headers but bad
payloads for 16-QAM modulation.

−10 −5 0 5 10
10

−5

10
−4

10
−3

10
−2

Relay Location (m)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

Src Dest

NC
DF
AF

MHOP
AF−GH

(a) Frequency Flat Channel

−10 −5 0 5 10
10

−5

10
−4

10
−3

10
−2

Relay Location (m)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

Src Dest

NC
DF
AF

MHOP
AF−GH

(b) TGn B Channel

Figure A.35 : Probability of destination receiving packets with bad headers for QPSK
modulation.

195

−10 −5 0 5 10

10
−4

10
−3

10
−2

Relay Location (m)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

Src Dest

NC
DF
AF

MHOP
AF−GH

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−4

10
−3

10
−2

Relay Location (m)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

Src Dest

NC
DF
AF

MHOP
AF−GH

(b) TGn B Channel

Figure A.36 : Probability of destination receiving packets with bad headers for 16-
QAM modulation.

−10 −5 0 5 10

10
−4

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

Src Dest

NC
DF
AF

MHOP
AF−GH

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−4

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

Src Dest

NC
DF
AF

MHOP
AF−GH

(b) TGn B Channel

Figure A.37 : Probability of missed detection (no energy detection or preamble cor-
relation) at the destination for QPSK payloads.

196

−10 −5 0 5 10

10
−4

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

Src Dest

NC
DF
AF

MHOP
AF−GH

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−4

10
−3

10
−2

10
−1

Relay Location (m)
P

ro
ba

bi
lit

y
of

 M
is

se
d

D
et

ec
tio

n

Src Dest

NC
DF
AF

MHOP
AF−GH

(b) TGn B Channel

Figure A.38 : Probability of missed detection (no energy detection or preamble cor-
relation) at the destination for 16-QAM payloads.

−10 −5 0 5 10

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

itt
in

g

Src Dest

NC
DF
AF

MHOP
AF−GH

(a) Frequency Flat Channel

−10 −5 0 5 10

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

itt
in

g

Src Dest

NC
DF
AF

MHOP
AF−GH

(b) TGn B Channel

Figure A.39 : Probability of relay transmitting for QPSK payloads.

197

−10 −5 0 5 10

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

itt
in

g

Src Dest

NC
DF
AF

MHOP
AF−GH

(a) Frequency Flat Channel

−10 −5 0 5 10

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

itt
in

g

Src Dest

NC
DF
AF

MHOP
AF−GH

(b) TGn B Channel

Figure A.40 : Probability of relay transmitting for 16-QAM payloads.

198

A.3.2 18 m SD Separation

−10 −5 0 5 10

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

Src Dest

MHOP
AF−GH

NC
DF
AF

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−3

10
−2

10
−1

Relay Location (m)
P

ro
ba

bi
lit

y
of

 B
ad

 P
ay

lo
ad

Src Dest

MHOP
AF−GH

NC
DF
AF

(b) TGn B Channel

Figure A.41 : Probability of destination receiving packets with good headers but bad
payloads for QPSK modulation.

−10 −5 0 5 10

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

Src Dest

MHOP
AF−GH

NC
DF
AF

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 B

ad
 P

ay
lo

ad

Src Dest

MHOP
AF−GH

NC
DF
AF

(b) TGn B Channel

Figure A.42 : Probability of destination receiving packets with good headers but bad
payloads for 16-QAM modulation.

199

−10 −5 0 5 10

10
−4

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

Src Dest

MHOP
AF−GH

NC
DF
AF

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−4

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

Src Dest

MHOP
AF−GH

NC
DF
AF

(b) TGn B Channel

Figure A.43 : Probability of destination receiving packets with bad headers for QPSK
modulation.

−10 −5 0 5 10

10
−4

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

Src Dest

MHOP
AF−GH

NC
DF
AF

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−4

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 B

ad
 H

ea
de

r

Src Dest

MHOP
AF−GH

NC
DF
AF

(b) TGn B Channel

Figure A.44 : Probability of destination receiving packets with bad headers for 16-
QAM modulation.

200

−10 −5 0 5 10

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

Src Dest

MHOP
AF−GH

NC
DF
AF

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

Src Dest

MHOP
AF−GH

NC
DF
AF

(b) TGn B Channel

Figure A.45 : Probability of missed detection (no energy detection or preamble cor-
relation) at the destination for QPSK payloads.

−10 −5 0 5 10

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

Src Dest

MHOP
AF−GH

NC
DF
AF

(a) Frequency Flat Channel

−10 −5 0 5 10

10
−3

10
−2

10
−1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 M

is
se

d
D

et
ec

tio
n

Src Dest

MHOP
AF−GH

NC
DF
AF

(b) TGn B Channel

Figure A.46 : Probability of missed detection (no energy detection or preamble cor-
relation) at the destination for 16-QAM payloads.

201

−10 −5 0 5 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

itt
in

g

Src Dest

MHOP
AF−GH

NC
DF
AF

(a) Frequency Flat Channel

−10 −5 0 5 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relay Location (m)
P

ro
ba

bi
lit

y
of

 R
el

ay
 T

ra
ns

m
itt

in
g

Src Dest

MHOP
AF−GH

NC
DF
AF

(b) TGn B Channel

Figure A.47 : Probability of relay transmitting for QPSK payloads.

−10 −5 0 5 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

itt
in

g

Src Dest

MHOP
AF−GH

NC
DF
AF

(a) Frequency Flat Channel

−10 −5 0 5 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relay Location (m)

P
ro

ba
bi

lit
y

of
 R

el
ay

 T
ra

ns
m

itt
in

g

Src Dest

MHOP
AF−GH

NC
DF
AF

(b) TGn B Channel

Figure A.48 : Probability of relay transmitting for 16-QAM payloads.

202

Bibliography

[1] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity. Part I:

System description,” IEEE Trans. Comm, vol. 51, no. 11, pp. 1927–1938, Nov.

2003.

[2] ——, “User cooperation diversity. Part II: Implementation aspects and perfor-

mance analysis,” IEEE Trans. Comm, vol. 51, no. 11, pp. 1939–1948, Nov. 2003.

[3] J. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless net-

works: Efficient protocols and outage behavior,” IEEE Trans. Information The-

ory, vol. 50, no. 12, 2004.

[4] J. Laneman and G. Wornell, “Distributed space-time-coded protocols for ex-

ploiting cooperative diversity in wireless networks,” Information Theory, IEEE

Transactions on, vol. 49, no. 10, pp. 2415–2425, 2003.

[5] G. Kramer, I. Marić, and R. Yates, “Cooperative communications,” Foundations

and Trends in Networking, vol. 1, no. 3, 2006.

[6] G. Bradford and J. Laneman, “A survey of implementation efforts and experi-

mental design for cooperative communications,” in Acoustics Speech and Signal

Processing (ICASSP), 2010 IEEE International Conference on, 2010, pp. 5602

–5605.

203

[7] G. Bradford and J. N. Laneman, “An experimental framework for the evaluation

of cooperative diversity,” in Proceedigs of CISS, 2009.

[8] S. Berger and A. Wittneben, “Experimental performance evaluation of multiuser

zero forcing relaying in indoor scenarios,” in Vehicular Technology Conference,

2005. VTC 2005-Spring. 2005 IEEE 61st, vol. 2. IEEE, 2005, pp. 1101–1105.

[9] P. Murphy, A. Sabharwal, and B. Aazhang, “On building a cooperative commu-

nication system: Testbed implementation and first results,” EURASIP Journal

on Wireless Communications and Networking, 2009 (in press).

[10] T. Korakis, M. Knox, E. Erkip, and S. Panwar, “Cooperative network implemen-

tation using open-source platforms,” Communications Magazine, IEEE, vol. 47,

no. 2, pp. 134 –141, 2009.

[11] “WARP Community Pubilcations.” [Online]. Available: http://warp.rice.edu/

papers

[12] “Rice University WARP Project.” [Online]. Available: http://warp.rice.edu/

[13] “GNU Radio.” [Online]. Available: http://gnuradio.org/

[14] “Ettus Research.” [Online]. Available: http://ettus.com/

[15] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and P. Steenkiste, “Enabling

MAC protocol implementations on software-defined radios,” in Proceedings of

the 6th USENIX symposium on Networked systems design and implementation.

USENIX Association, 2009, pp. 91–105.

http://warp.rice.edu/papers
http://warp.rice.edu/papers
http://warp.rice.edu/
http://gnuradio.org/
http://ettus.com/

204

[16] O. Shin, A. Chan, H. Kung, and V. Tarokh, “Design of an OFDM coopera-

tive space-time diversity system,” IEEE Transactions on Vehicular Technology,

vol. 56, no. 4, 2007.

[17] S. Yiu, R. Schober, and L. Lampe, “Distributed space-time block coding,” Com-

munications, IEEE Transactions on, vol. 54, no. 7, pp. 1195 –1206, 2006.

[18] S. Alamouti, “A simple transmit diversity technique for wireless communica-

tions,” IEEE Journal on Selected Areas in Comm., vol. 16, no. 8, 1998.

[19] T. Pollet, M. Van Bladel, and M. Moeneclaey, “BER sensitivity of OFDM sys-

tems to carrier frequency offset and Wiener phase noise,” IEEE Trans. on Com-

munications, vol. 43, no. 234, 1995.

[20] J. Armstrong, “Analysis of new and existing methods of reducing intercarrier

interference due to carrier frequency offset in ofdm,” Communications, IEEE

Transactions on, vol. 47, no. 3, pp. 365 –369, mar. 1999.

[21] K. Sathananthan and C. Tellambura, “Probability of error calculation of OFDM

systems with frequency offset,” Communications, IEEE Transactions on, vol. 49,

no. 11, pp. 1884–1888, 2002.

[22] Y. Mostofi and D. Cox, “ICI mitigation for pilot-aided OFDM mobile systems,”

Wireless Communications, IEEE Transactions on, vol. 4, no. 2, pp. 765–774,

2005.

[23] “WARP Clock Board.” [Online]. Available: http://warp.rice.edu/w/

HardwareUsersGuides/ClockBoard v1.1

http://warp.rice.edu/w/HardwareUsersGuides/ClockBoard_v1.1
http://warp.rice.edu/w/HardwareUsersGuides/ClockBoard_v1.1

205

[24] [Online]. Available: http://www.crystekcrystals.com/crystal/spec-sheets/tcxo/

CVT32.pdf

[25] “WARP Radio Board.” [Online]. Available: http://warp.rice.edu/w/

HardwareUsersGuides/RadioBoard v1.4

[26] Y. Yao and G. Giannakis, “Blind carrier frequency offset estimation in SISO,

MIMO, and multiuser OFDM systems,” Communications, IEEE Transactions

on, vol. 53, no. 1, pp. 173–183, 2005.

[27] J. Li, G. Liu, and G. Giannakis, “Carrier frequency offset estimation for OFDM-

based WLANs,” Signal Processing Letters, IEEE, vol. 8, no. 3, pp. 80–82, 2002.

[28] T. Schmidl and D. Cox, “Robust frequency and timing synchronization for

OFDM,” Communications, IEEE Transactions on, vol. 45, no. 12, pp. 1613

–1621, dec. 1997.

[29] “WARPLab.” [Online]. Available: http://warp.rice.edu/w/WARPLab

[30] L. Brötje, S. Vogeler, K. Kammeyer, R. Rückriem, and S. Fechtel, “On carrier

frequency offsets in Alamouti-coded OFDM systems similar to IEEE 802.11,” in

Proc. 8th International OFDM Workshop (InOWo03), August.

[31] M. Krondorf and G. Fettweis, “Numerical performance evaluation for Alamouti

space time coded OFDM under receiver impairments,” Wireless Communica-

tions, IEEE Transactions on, vol. 8, no. 3, pp. 1446–1455, 2009.

[32] R. Sakata, K. Akita, and K. Sato, “Real-time phase tracking method for IEEE

802.11 a/g/n receiver under phase noise condition,” in IEEE Vehicular Technol-

ogy Conference, vol. 4, 2006.

http://www.crystekcrystals.com/crystal/spec-sheets/tcxo/CVT32.pdf
http://www.crystekcrystals.com/crystal/spec-sheets/tcxo/CVT32.pdf
http://warp.rice.edu/w/HardwareUsersGuides/RadioBoard_v1.4
http://warp.rice.edu/w/HardwareUsersGuides/RadioBoard_v1.4
http://warp.rice.edu/w/WARPLab

206

[33] Q. Huang, M. Ghogho, and J. Wei, “Data detection in cooperative STBC-

OFDM systems with multiple frequency offsets,” Signal Processing Letters,

IEEE, vol. 16, no. 7, pp. 600–603, 2009.

[34] X. Li, F. Ng, and T. Han, “Carrier frequency offset mitigation in asynchronous

cooperative OFDM transmissions,” Signal Processing, IEEE Transactions on,

vol. 56, no. 2, pp. 675–685, 2008.

[35] J. Mietzner, J. Eick, and P. Hoeher, “On distributed space-time coding tech-

niques for cooperative wireless networks and their sensitivity to frequency off-

sets,” in Smart Antennas, 2004. ITG Workshop on. IEEE, 2005, pp. 114–121.

[36] “Xilinx System Generator.” [Online]. Available: http://xilinx.com/sysgen

[37] “WARP OFDM Reference Design.” [Online]. Available: http://warp.rice.edu/

w/OFDMReferenceDesign

[38] “Azimuth ACE 400WB.” [Online]. Available: http://www.azimuthsystems.

com/platforms-channel-400wb.htm

[39] “Pasternack PE2014.” [Online]. Available: http://search.pasternack.com/

Search.aspx?Query=pe2014

[40] V. Erceg, et al., “TGn channel models,” IEEE 802.11 document 03/940r4.

[41] S. Makda, A. Choudhary, N. Raman, T. Korakis, Z. Tao, and S. Panwar, “Secu-

rity implications of cooperative communications in wireless networks,” in Sarnoff

Symposium, 2008 IEEE, 2008, pp. 1 –6.

[42] B. Wang, Z. Han, and K. Liu, “Distributed relay selection and power control

for multiuser cooperative communication networks using buyer/seller game,” in

http://xilinx.com/sysgen
http://warp.rice.edu/w/OFDMReferenceDesign
http://warp.rice.edu/w/OFDMReferenceDesign
http://www.azimuthsystems.com/platforms-channel-400wb.htm
http://www.azimuthsystems.com/platforms-channel-400wb.htm
http://search.pasternack.com/Search.aspx?Query=pe2014
http://search.pasternack.com/Search.aspx?Query=pe2014

207

INFOCOM 2007. 26th IEEE International Conference on Computer Communi-

cations. IEEE, May 2007, pp. 544 –552.

[43] T. Rappaport, Wireless communications: principles and practice. Prentice Hall

PTR Upper Saddle River, NJ, USA, 2001.

[44] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity

theorems for relay networks,” IEEE Transactions on Information Theory, vol. 51,

no. 9, pp. 3037–3063, 2005.

[45] “Rice University WARP Project.” [Online]. Available: http://warp.rice.edu/w/

WARPnet

[46] C. Hunter, P. Murphy, and A. Sabharwal, “Real-time testbed implementation of

a distributed cooperative MAC and PHY,” in Information Sciences and Systems

(CISS), 2010 44th Annual Conference on. IEEE, 2010, pp. 1–6.

[47] M. Lacage, M. Manshaei, and T. Turletti, “IEEE 802.11 rate adaptation: a

practical approach,” in Proceedings of the 7th ACM international symposium on

Modeling, analysis and simulation of wireless and mobile systems. ACM, 2004,

pp. 126–134.

[48] S. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate adaptation for 802.11

wireless networks,” in Proceedings of the 12th annual international conference on

Mobile computing and networking. ACM, 2006, pp. 146–157.

[49] J. Camp and E. Knightly, “Modulation rate adaptation in urban and vehicu-

lar environments: cross-layer implementation and experimental evaluation,” in

Proceedings of the 14th ACM international conference on Mobile computing and

networking. ACM, 2008, pp. 315–326.

http://warp.rice.edu/w/WARPnet
http://warp.rice.edu/w/WARPnet

208

[50] M. Duarte and A. Sabharwal, “Full-duplex wireless communications using off-

the-shelf radios: Feasibility and first results,” in Asilomar Conference on Signals,

Systems and Computers, 2010.

[51] J. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, “Achieving single channel,

full duplex wireless communication,” in Proceedings of Mobicom, 2010.

	Abstract
	List of Illustrations
	List of Tables
	Introduction
	Objectives and Challenges
	Summary of Contributions

	Background
	Platform Selection
	Cooperative Schemes
	OFDM
	Distributed Space-Time Block Code
	Networking Support

	Carrier Frequency Offsets
	Origin of CFO
	Impact of CFO in OFDM
	Expectations for CFO on WARP
	Measured CFO in Hardware
	Time Domain CFO Correction
	Time Domain CFO Estimation Algorithm
	Performance Expectations
	Radio Transients
	Performance Measurements

	Frequency Domain Phase Correction
	CFO in a Cooperative System
	Temporal Properties of CFO
	Mitigating CFO in a Cooperative System
	CFO with Amplify and Forward
	CFO with Decode and Forward
	Frequency Domain Residual CFO Estimation

	Conclusions

	Physical Layer Transceiver Design
	Key Subsystems
	Alamouti Encoding
	Packet Buffers
	Frame Format
	Energy Detector
	Receiver State Machine
	Packet Timing Correlator
	Waveform Buffer

	Auto-Response System
	RxTx Turnaround in a Cooperative System
	Header Match Units
	Actions
	Header Translation
	Timing

	Designing for Characterization
	Carrier Frequency Offset
	Packet Detection
	Random Payload Generation
	Per-Packet Measurements

	Experimental Methodologies and Metrics
	Node Design
	Channel Emulator
	Connections
	Channel Models

	Topologies
	Cooperative Schemes
	Methodology
	WARPnet Framework
	Node Behaviors Across Time Slots
	Interleaving Modes
	Interleaving Trials

	Metrics
	Packet Error Rate
	Bit Error Rate

	Experiments with Full Cooperative Transceiver
	Experimental Parameters
	Co-located Source/Relay Topology
	PER/BER with 1412 Byte Payloads
	PER/BER with 692 Byte Payloads
	Observations

	Equidistant Nodes Topology
	PER/BER with 1412 Byte Payloads
	PER/BER with 692 Byte Payloads
	Observations

	Linear Topologies
	PER/BER with 10.4 m SD Separation
	PER/BER with 18 m SD Separation
	Observations

	Analysis of Performance Bottlenecks
	CFO Pre-Correction Errors
	Dynamic Range of Channel Frequency Response
	Bit Error Densities

	Future Work
	Physical Layer Cooperation in a Network
	Early MAC Results
	Rate Adaptation
	Open Questions

	Transceiver Extensions
	Temporal Combining
	Error Correcting Codes
	Full Duplex

	Additional Plots for Full Transceiver Characterization
	Co-located Source/Relay Topology
	1412 Byte Payloads
	692 Byte Payloads

	Equidistant Nodes Topology
	1412 Byte Payloads
	692 Byte Payloads

	Linear Topologies
	10.4 m SD Separation
	18 m SD Separation

