
Networking on WARP
Chris Hunter

Rice University

WARP Workshop at DySPAN 2011
May 3, 2011

warp.rice.edu



The OSI Model

Physical
Link

Network

Presentation

Transport
Session

Application



The OSI Model

Physical
Link

Network
Transport

Application



The OSI Model

Physical
Link

Network
Transport

Application What?

How?
When?

WARP can 
do them all



Outline

• Design Realization

• Example

• Lab Exercises



Hardware Agnostic
State Machine

WARP
Hardware

WARPMAC

Framework

1

2

3

Design Realization

• Program high-level MAC 
behavior independent of 
hardware

• Use the WARPMAC 
framework to stitch the 
MAC to hardware



Hardware Agnostic
State Machine

WARP
Hardware

WARPMAC

Framework

1

2

3

Design Realization

• No way to “lock” the 
framework and have it 
support all possible 
future MAC layers

WARPMAC

Framework

Solution: WARPMAC must grow with new algorithms
Problem: How do we maintain sync between designs?



Reference Designs



Reference Designs
• Snapshots of the WARP repository

• Free, open-source releases at regular intervals

• Today’s exercises are Reference Design v16.1

• Reference design is an example of:

• a working PHY

• a working MAC

• the way all the pieces fit together

• stuff that we use for our research



Reference Designs

Timer Ethernet 
MAC

PLB

Packet
Buffers

FPGA Logic

Radio
Controller

Hardware

Custom
PHY

MIMO OFDM
Transmitter

Radio 
Bridges

Packet
DetectorAGCMIMO OFDM 

Receiver

PPC Code
PHY

Driver
Timer
Driver

Ethernet 
MAC Driver

MAC Research Application

WARPMACWARPPHY

Misc.
Drivers

DMA
Driver

Digital
I/Q

Digital
I/Q

I/Q &
RSSI RSSI

Control

Radios Ethernet



User Code

WARPMAC

WARPPHY

Drivers



User Code

WARPMAC

WARPPHY

Drivers

PHY Driver:

• Configure very low-level parameters

• Correlation thresholds

• FFT scaling parameters

• Filter coefficients



User Code

WARPMAC

WARPPHY

Drivers

Radio Controller Driver:

• Set center frequency

• Switch from Rx to Tx mode and vice versa



WARPPHY

User Code

WARPMAC

Drivers

PHY Control:

• Provides control over PHY commonalities

• General initialization command

• Configure constellation order

• Configure coding rate

• “Start” and “Stop” the PHY



User Code

WARPMAC

WARPPHY

Drivers

Completely PHY 
dependent

Mostly PHY 
agnostic



WARPMAC

User Code

WARPPHY

Drivers

MAC Control:

• Provides control over MAC commonalities

• Timers for timeouts, backoffs, etc.

• Carrier-sensing functions

• Register user callbacks for event-driven 
operation



User Code

WARPMAC

WARPPHY

Drivers

User-level MAC Algorithms:

• High-level MAC algorithms

• Some examples so far:

• Aloha

• CSMA/CA

• MAC Workshop Exercises

• Distributed On-demand Cooperation 
(DOC)



An example: CSMA

• Carrier-Sense Multiple Access

• Serves as a foundation for a large class of 
other random access protocols

• Fairly simple algorithm



OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET



Transmit States

OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET



warpmac_emacRx_handler
- Starts DMA transfer from EMAC to PHY

dataFromNetworkLayer_callback
- Constructs Macframe header for data packet

warpmac_prepPhyForXmit
- Configures PHY
- Copies Macframe header into PHY's buffer

warpmac_startPhyXmit
- Disables packet detection
- Starts radio controller's transmit state machine

warpmac_finishPhyXmit
- Polls PHY and waits for it to complete
- Enables packet detection and radio reception

- Starts a timeout timer
- Decrements remaining resend counter

- Clears EMAC

If medium is idle {

}
If medium is busy {

}
- Starts a backoff timer

Transmit States

WARPMAC

User-Code



Receive States

OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET

How can we use 
WARPMAC to 

keep turn-
around-time 
(TAT) small?



warpmac_pollPhy
- Copies header into Macframe
phyRx_goodHeader_callback

- Checks address/type fields of Macframe header
If data {

- Polls PHY receiver and waits for a "Good" or "Bad" state

warpmac_prepPktToNetwork
- Starts DMA transfer from PHY to EMAC

warpmac_finishPhyXmit
- Polls PHY and waits for it to complete
- Enables packet detection and radio reception

warpmac_startPktToNetwork
- Polls DMA and waits for it to complete
- Starts EMAC transmission

 }

- Resets PHY

If Good {

}
If acknowledgment {

}
- Clears timeout timer

Send acknowledgement

Receive States

Fast Turn-Around Time
(TAT)

WARPMAC

User-Code

1) Software calls
2) Hardened “autoresponder”



Timer States

OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET



Timer States
warpmac_pollTimer

- Clears timers

timer_callback
- Checks timer type
If timeout {

}
If backoff {

}

warpmac_startPhyXmit
- Disables packet detection
- Starts radio controller's transmit state machine

warpmac_finishPhyXmit
- Polls PHY and waits for it to complete
- Enables packet detection and radio reception

- Starts a timeout timer
- Decrements remaining resend counter

warpmac_prepPhyForXmit
- Configures PHY
- Copies Macframe header into PHY's buffer

- Starts a backoff timer

- Checks each timer status and calls relevant callbacks

WARPMAC

User-Code



OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET

All the preceding pseudocode translates 
naturally to the C-code in the Reference Design:

http://warp.rice.edu/trac/browser/ResearchApps/
MAC/CSMAMAC/csmaMac.c

http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c
http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c
http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c
http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c


MAC 
Softwar

e

MAC 
Software

PHY Tx To D/A

PHY Rx From A/D



Auto 
Responder

MAC 
Softwar

e

MAC 
Software

PHY Tx To D/A

PHY Rx From A/D

MAC specifies packet templates, Rx packet 
conditions and Tx header substitution.

PHY initiates transmission automatically. 



Rx Rx 

CRCTYPSEQDSTSRC

TEMPLATES ACK CRCRx 

PACKET FORMAT

ACK

CONDITIONS
Template Addressed 

to Node 1
Good

Payload
Bad

Payload
Packet
Type

ACK ✓ ✓ DATA



CRCTYPSEQDSTSRC

TEMPLATES Rx Rx ACK CRCRx 

PACKET FORMAT

ACK

1510

CONDITIONS

RX PACKET DATA CRC

Template Addressed 
to Node 1

Good
Payload

Bad
Payload

Packet
Type

ACK ✓ ✓ DATA



1510

CRCTYPSEQDSTSRC

TEMPLATES Rx Rx ACK CRCRx 

PACKET FORMAT

ACK

RX PACKET DATA CRC

TX PACKET Rx Rx ACK CRCRx 

1510

CONDITIONS
Template Addressed 

to Node 1
Good

Payload
Bad

Payload
Packet
Type

ACK ✓ ✓ DATA



1510

CRCTYPSEQDSTSRC

TEMPLATES Rx Rx ACK CRCRx 

PACKET FORMAT

ACK

RX PACKET DATA CRC

TX PACKET Rx Rx ACK CRCRx 151 0

CONDITIONS
Template Addressed 

to Node 1
Good

Payload
Bad

Payload
Packet
Type

ACK ✓ ✓ DATA



Questions?



Lab Exercises

noMAC Too simple to be a MAC; just puts 
packets over the air

halfMAC SW Reception-half of a MAC
(using software calls for ACKs)

cogMac “Cognitive” MAC example
(using autoresponder for ACKs)



noMac

Transmit States

Receive States

Idle

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Transmit DATA

via PHY

To test your noMac code, ping 10.0.0.20



halfMac

Transmit States

Receive States

Idle

Accept Packet 
from Source

Receive Packet
via PHY

Transmit DATA
via PHY

SELF

Packet Type

Destination
Address

Deliver Packet to 
Sink

Transmit ACK
via PHY

DATA

OTHER

OTHER

Sequence
Number

REPEAT

UNIQUE



halfMac

Node 0 10.0.0.20

Node 1 10.0.0.1

Node 2 10.0.0.2

Node 3 10.0.0.3

Node 4 10.0.0.4

Node 16 10.0.0.16

Node 5 10.0.0.5

...

UDP Video



Node 5

Least Significant Bit (LSB)

Most Significant Bit (MSB)

halfMac



cogMAC

Channel D Channel B Channel A Channel C Channel B

time to next hop



cogMAC

Channel D Channel B Channel A Channel C Channel B

time to next hop



Channel D Channel B Channel A Channel C Channel B

time to next hop

cogMAC



Transmit States

Receive States

Idle

Accept Packet 
from Source

Receive Packet
via PHY

Transmit DATA
via PHY

SELF

Packet Type

Destination
Address

Deliver Packet to 
Sink

Transmit ACK
via PHY

DATA

OTHER

OTHER
Set Timer

COGHOPPENDING

Timer Expires

Timer States

Change Center 
Frequency

Sequence
Number

REPEAT

UNIQUE

cogMAC



Logistics

• WARPMAC API: http://warp.rice.edu/WARP_API

• Contacting us

• Support & technical questions

• http://warp.rice.edu/forums/

• Hardware sales

• Mango Communications (http://mangocomm.com/)

http://warp.rice.edu/WARP_PI
http://warp.rice.edu/WARP_PI
http://warp.rice.edu/forums/
http://warp.rice.edu/forums/
http://mangocomm.com
http://mangocomm.com

