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WARP can 
do them all



Outline

• Design Realization

• Example

• Lab Exercises



Hardware Agnostic
State Machine

WARP
Hardware

WARPMAC

Framework

1

2

3

Design Realization

• Program high-level MAC 
behavior independent of 
hardware

• Use the WARPMAC 
framework to stitch the 
MAC to hardware
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Design Realization

• No way to “lock” the 
framework and have it 
support all possible 
future MAC layers

WARPMAC

Framework

Solution: WARPMAC must grow with new algorithms
Problem: How do we maintain sync between designs?
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Reference Designs
• Snapshots of the WARP repository

• Free, open-source releases at regular intervals

• Today’s exercises are Reference Design v16.1

• Reference design is an example of:

• a working PHY

• a working MAC

• the way all the pieces fit together

• stuff that we use for our research
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User Code

WARPMAC

WARPPHY

Drivers

PHY Driver:

• Configure very low-level parameters

• Correlation thresholds

• FFT scaling parameters

• Filter coefficients



User Code

WARPMAC

WARPPHY

Drivers

Radio Controller Driver:

• Set center frequency

• Switch from Rx to Tx mode and vice versa



WARPPHY

User Code

WARPMAC

Drivers

PHY Control:

• Provides control over PHY commonalities

• General initialization command

• Configure constellation order

• Configure coding rate

• “Start” and “Stop” the PHY
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Drivers

Completely PHY 
dependent

Mostly PHY 
agnostic



WARPMAC

User Code

WARPPHY

Drivers

MAC Control:

• Provides control over MAC commonalities

• Timers for timeouts, backoffs, etc.

• Carrier-sensing functions

• Register user callbacks for event-driven 
operation



User Code

WARPMAC

WARPPHY

Drivers

User-level MAC Algorithms:

• High-level MAC algorithms

• Some examples so far:

• Aloha

• CSMA/CA

• MAC Workshop Exercises

• Distributed On-demand Cooperation 
(DOC)



An example: CSMA

• Carrier-Sense Multiple Access

• Serves as a foundation for a large class of 
other random access protocols

• Fairly simple algorithm
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Transmit States
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warpmac_emacRx_handler
- Starts DMA transfer from EMAC to PHY

dataFromNetworkLayer_callback
- Constructs Macframe header for data packet

warpmac_prepPhyForXmit
- Configures PHY
- Copies Macframe header into PHY's buffer

warpmac_startPhyXmit
- Disables packet detection
- Starts radio controller's transmit state machine

warpmac_finishPhyXmit
- Polls PHY and waits for it to complete
- Enables packet detection and radio reception

- Starts a timeout timer
- Decrements remaining resend counter

- Clears EMAC

If medium is idle {

}
If medium is busy {

}
- Starts a backoff timer

Transmit States

WARPMAC

User-Code
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How can we use 
WARPMAC to 

keep turn-
around-time 
(TAT) small?



warpmac_pollPhy
- Copies header into Macframe
phyRx_goodHeader_callback

- Checks address/type fields of Macframe header
If data {

- Polls PHY receiver and waits for a "Good" or "Bad" state

warpmac_prepPktToNetwork
- Starts DMA transfer from PHY to EMAC

warpmac_finishPhyXmit
- Polls PHY and waits for it to complete
- Enables packet detection and radio reception

warpmac_startPktToNetwork
- Polls DMA and waits for it to complete
- Starts EMAC transmission

 }

- Resets PHY

If Good {

}
If acknowledgment {

}
- Clears timeout timer

Send acknowledgement

Receive States

Fast Turn-Around Time
(TAT)

WARPMAC

User-Code

1) Software calls
2) Hardened “autoresponder”
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Timer States
warpmac_pollTimer

- Clears timers

timer_callback
- Checks timer type
If timeout {

}
If backoff {

}

warpmac_startPhyXmit
- Disables packet detection
- Starts radio controller's transmit state machine

warpmac_finishPhyXmit
- Polls PHY and waits for it to complete
- Enables packet detection and radio reception

- Starts a timeout timer
- Decrements remaining resend counter

warpmac_prepPhyForXmit
- Configures PHY
- Copies Macframe header into PHY's buffer

- Starts a backoff timer

- Checks each timer status and calls relevant callbacks

WARPMAC

User-Code
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All the preceding pseudocode translates 
naturally to the C-code in the Reference Design:

http://warp.rice.edu/trac/browser/ResearchApps/
MAC/CSMAMAC/csmaMac.c

http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c
http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c
http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c
http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c
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Auto 
Responder
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PHY Tx To D/A

PHY Rx From A/D

MAC specifies packet templates, Rx packet 
conditions and Tx header substitution.

PHY initiates transmission automatically. 
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Questions?



Lab Exercises

noMAC Too simple to be a MAC; just puts 
packets over the air

halfMAC SW Reception-half of a MAC
(using software calls for ACKs)

cogMac “Cognitive” MAC example
(using autoresponder for ACKs)
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To test your noMac code, ping 10.0.0.20
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halfMac

Node 0 10.0.0.20

Node 1 10.0.0.1

Node 2 10.0.0.2

Node 3 10.0.0.3

Node 4 10.0.0.4

Node 16 10.0.0.16

Node 5 10.0.0.5

...

UDP Video



Node 5

Least Significant Bit (LSB)

Most Significant Bit (MSB)

halfMac
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Channel D Channel B Channel A Channel C Channel B

time to next hop
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Channel D Channel B Channel A Channel C Channel B

time to next hop

cogMAC
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Logistics

• WARPMAC API: http://warp.rice.edu/WARP_API

• Contacting us

• Support & technical questions

• http://warp.rice.edu/forums/

• Hardware sales

• Mango Communications (http://mangocomm.com/)

http://warp.rice.edu/WARP_PI
http://warp.rice.edu/WARP_PI
http://warp.rice.edu/forums/
http://warp.rice.edu/forums/
http://mangocomm.com
http://mangocomm.com

