
Networking on WARP
Chris Hunter

Rice University

WARP Workshop at Rice University
November 15, 2008

warp.rice.edu



Today’s Agenda

• Outstanding questions?

• Networking on WARP lecture

• Labs 4, 5, and 6

• Workshop wrap-up



Packet

Source

Wireless

Transmitter

Packet

Sink

Wireless

Receiver

Radio

Simple Wireless Node



Packet

Source

Wireless

Transmitter

Packet

Sink

Wireless

Receiver

Radio

Physical Layer Basics

Somebody Else’s Problem

Simple Wireless Node



Packet

Source

Wireless

Transmitter

Packet

Sink

Wireless

Receiver

Radio

Network Layer Basics

Somebody Else’s Problem

Simple Wireless Node



Packet

Source

Wireless

Transmitter

Packet

Sink

Wireless

Receiver

Radio

Network Layer Basics

Somebody Else’s Problem

Simple Wireless Node



Packet

Source

Wireless

Transmitter

Packet

Sink

Wireless

Receiver

Radio

Network Layer Basics

Simple Wireless Node



Targeting WARP Hardware
(Understanding the Development Environment)

FPGA FABRIC 

AND ARITHMETIC UNITS

EMBEDDED PROCESSOR

(PowerPC)

CUSTOM

HIGH-LEVEL

APP. CODE

CUSTOM

LOW-LEVEL

DRIVER CODE

WARP/XILINX SUPPORT SOFTWARE

(LIBRARIES, DRIVERS, ETCETERA)

CUSTOM

HARDWARE IP

(GENERATED)

CUSTOM

HARDWARE IP

(HAND-CODED)

EXISTING HARDWARE IP

(RADIO CONTROLLER, OFDM TX/RX, ETC.)

STANDARD

BUSES

(PLB, OPB)

FPGA (Xilinx XC2VP70)

60



Targeting WARP Hardware
(Understanding the Development Environment)

FPGA FABRIC 

AND ARITHMETIC UNITS

EMBEDDED PROCESSOR

(PowerPC)

CUSTOM

HIGH-LEVEL

APP. CODE

CUSTOM

LOW-LEVEL

DRIVER CODE

WARP/XILINX SUPPORT SOFTWARE

(LIBRARIES, DRIVERS, ETCETERA)

CUSTOM

HARDWARE IP

(GENERATED)

CUSTOM

HARDWARE IP

(HAND-CODED)

EXISTING HARDWARE IP

(RADIO CONTROLLER, OFDM TX/RX, ETC.)

STANDARD

BUSES

(PLB, OPB)

FPGA (Xilinx XC2VP70)

Targeting WARP Hardware
(Understanding the Development Environment)

FPGA FABRIC 

AND ARITHMETIC UNITS

EMBEDDED PROCESSOR

(PowerPC)

CUSTOM

HIGH-LEVEL

APP. CODE

CUSTOM

LOW-LEVEL

DRIVER CODE

WARP/XILINX SUPPORT SOFTWARE

(LIBRARIES, DRIVERS, ETCETERA)

CUSTOM

HARDWARE IP

(GENERATED)

CUSTOM

HARDWARE IP

(HAND-CODED)

EXISTING HARDWARE IP

(RADIO CONTROLLER, OFDM TX/RX, ETC.)

STANDARD

BUSES

(PLB, OPB)

FPGA (Xilinx XC2VP70)

60

Today’s exercises



Physical
Link

Network
Transport
Session

Presentation
Application

The OSI Model



Physical
Link

Network
Transport
Session

Presentation
Application

WARP can 
do them all

The OSI Model



The OSI Model

Physical
Link

Network
Transport
Session

Presentation
Application



The OSI Model

Our Focus: Medium Access Control

Physical
Link

Network
Transport
Session

Presentation
Application



• Why?

• All commercial 802.11 chipsets are closed

• Many opportunities for cross-layer research

Physical
Link

Network
Transport
Session

Presentation
Application

The OSI Model



Outline

• Overview of Medium Access Control 

• Design Realization

• Example

• Lab Exercises



Medium Access 
Control Overview



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

Data
D

ata



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

Data

Data



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

XData

Data



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

XData

Data

Received a jumbled 
packet... infer a packet 
collision



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

X

What if we ACK every
transmit, and 
retransmit when we 
receive no ACK?

Data

Data

Received a jumbled 
packet... infer a packet 
collision



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?
D

ata

Data



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

ACK
A

C
K



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

Data

Data



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

XData

Data



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

ACK



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

Retransmit



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

ACK



Random Backoffs

• PROBLEM: 
Retransmissions can 
collide ad infinitum!

• SOLUTION: Wait a 
random amount of time 
before a retransmit

0 1 2 3 4 5

8

16

24

32

40

Contention Window
increases over time



Important Extensions

• Carrier Sense Multiple Access (CSMA)

• Listen to the medium before sending

• Request to Send / Clear to Send (RTS/CTS)

• “Reserve” the medium with a short 
packet before sending a long one



Design Realization



Hardware Agnostic
State Machine

WARP
Hardware

WARPMAC

Framework

1

2

3

Design Realization

• Program high-level 
MAC behavior 
independent of 
hardware

• Use the 
WARPMAC 
framework to 
stitch the MAC to 
hardware



Hardware Agnostic
State Machine

WARP
Hardware

WARPMAC

Framework

1

2

3

Design Realization

• No way to “lock” the 
framework and have it 
support all possible 
future MAC layers

WARPMAC

Framework



Hardware Agnostic
State Machine

WARP
Hardware

WARPMAC

Framework

1

2

3

Design Realization

• No way to “lock” the 
framework and have it 
support all possible 
future MAC layers

WARPMAC

Framework

Solution: WARPMAC must grow with new algorithms



Hardware Agnostic
State Machine

WARP
Hardware

WARPMAC

Framework

1

2

3

Design Realization

• No way to “lock” the 
framework and have it 
support all possible 
future MAC layers

WARPMAC

Framework

Solution: WARPMAC must grow with new algorithms

Problem: How do we maintain sync between designs?



Reference Designs



Reference Designs



Reference Designs
• Snapshots of the WARP repository



Reference Designs
• Snapshots of the WARP repository

• Free, open-source releases at regular intervals

• Today’s exercises are on nearly-released 
Reference Design v12

• Keeps pace with Xilinx design tools



Reference Designs
• Snapshots of the WARP repository

• Free, open-source releases at regular intervals

• Today’s exercises are on nearly-released 
Reference Design v12

• Keeps pace with Xilinx design tools

• Reference design is an example of:

• a working PHY

• a working MAC

• the way all the pieces fit together



Timer

Custom Peripherals Xilinx Peripherals

Ethernet 
MAC

PLB

BRAM Packet 

Buffers FPGA Logic

PPC Code

DMA

PHY

Driver

Timer

Driver

Ethernet 
MAC Driver

User-level MAC

PPC
IRQ

WARPMACWARPPHY

User I/O
Drivers

Radio Controller, 
AGC, etc.

Misc.

Drivers

Interrupt
Controller

Interrupt
Controller 

Driver

Custom

PHY

Interrupts

Reference Designs



User Code

WARPMAC

WARPPHY

Drivers



User Code

WARPMAC

WARPPHY

Drivers



User Code

WARPMAC

WARPPHY

Drivers



User Code

WARPMAC

WARPPHY

Drivers

PHY Driver:

• Configure very low-level parameters

• Correlation thresholds

• FFT scaling parameters

• Filter coefficients

• Etc.



User Code

WARPMAC

WARPPHY

Drivers



User Code

WARPMAC

WARPPHY

Drivers



User Code

WARPMAC

WARPPHY

Drivers

Radio Controller Driver:

• Set center frequency

• Switch from Rx to Tx mode and vice versa



User Code

WARPMAC

WARPPHY

Drivers



WARPPHY

User Code

WARPMAC

Drivers



WARPPHY

User Code

WARPMAC

Drivers

PHY Control:

• Provides control over PHY commonalities

• General initialization command

• Configure constellation order

• “Start” and “Stop” the PHY



WARPPHY

User Code

WARPMAC

Drivers



User Code

WARPMAC

WARPPHY

Drivers



User Code

WARPMAC

WARPPHY

Drivers

Completely PHY 
dependent

Mostly PHY 
agnostic



WARPMAC

User Code

WARPPHY

Drivers



WARPMAC

User Code

WARPPHY

Drivers

MAC Control:

• Provides control over MAC commonalities

• Timers for timeouts, backoffs, etc.

• Carrier-sensing functions

• Register user callbacks to ISRs

• Etc.



WARPMAC

User Code

WARPPHY

Drivers



User Code

WARPMAC

WARPPHY

Drivers



User Code

WARPMAC

WARPPHY

Drivers

User-level MAC Algorithms:

• High-level MAC algorithms

• Some examples so far:

• Aloha

• Carrier-sensing MAC

• Opportunistic Auto-Rate (OAR)

• MAC Workshop Exercises



User Code

WARPMAC

WARPPHY

Drivers



An example: CSMA

• Carrier-sensing Multiple Access

• Serves as a foundation for a large class of 
other random access protocols

• Fairly simple algorithm



OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET



OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET

OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET



OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET

OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET



Transmit States

OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET



Transmit States
emacRx_int_handler

- Starts DMA transfer from EMAC to PHY

emacRx_callback

- Constructs Macframe header for data packet

warpmac_prepPhyForXmit

- Configures PHY

- Copies Macframe header into PHY's buffer

warpmac_startPhyXmit

- Disables packet detection

- Starts radio controller's transmit state machine

warpmac_finishPhyXmit

- Polls PHY and waits for it to complete

- Enables packet detection and radio reception

- Starts a timeout timer

- Clears EMAC and interrupt controller

If medium is idle {

}

If medium is busy {

}
- Starts a backoff timer

WARPMAC

User-Code



OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET

OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET



OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET

OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET



Receive States

OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET



Receive States
phyRx_goodHeader_int_handler

- Copies header into Macframe

phyRx_goodHeader_callback

- Checks address/type fields of Macframe header

If data {

warpmac_prepPhyForXmit

- Configures PHY

- Copies Macframe header into PHY's buffer

- Polls PHY receiver and waits for a "Good" or "Bad" state

warpmac_startPhyXmit

- Disables packet detection

- Starts radio controller's transmit state machine

warpmac_prepEmacForXmit

- Starts DMA transfer from PHY to EMAC

warpmac_finishPhyXmit

- Polls PHY and waits for it to complete

- Enables packet detection and radio reception

warpmac_startEmacXmit

- Polls DMA and waits for it to complete

- Starts EMAC transmission

 }

- Clears interrupts in PHY and interrupt controller

If Good {

- Constructs an ACK Macframe to prepare for a complete Rx packet

}

If acknowledgment {

}
- Clears timeout timer

WARPMAC

User-Code



Receive States
phyRx_goodHeader_int_handler

- Copies header into Macframe

phyRx_goodHeader_callback

- Checks address/type fields of Macframe header

If data {

warpmac_prepPhyForXmit

- Configures PHY

- Copies Macframe header into PHY's buffer

- Polls PHY receiver and waits for a "Good" or "Bad" state

warpmac_startPhyXmit

- Disables packet detection

- Starts radio controller's transmit state machine

warpmac_prepEmacForXmit

- Starts DMA transfer from PHY to EMAC

warpmac_finishPhyXmit

- Polls PHY and waits for it to complete

- Enables packet detection and radio reception

warpmac_startEmacXmit

- Polls DMA and waits for it to complete

- Starts EMAC transmission

 }

- Clears interrupts in PHY and interrupt controller

If Good {

- Constructs an ACK Macframe to prepare for a complete Rx packet

}

If acknowledgment {

}
- Clears timeout timer

WARPMAC

User-Code

Fast Turn-Around Time
(TAT)



OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET

OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET



OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET

OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET



Timer States

OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET



Timer States
timer_int_handler

- Clears interrupts in timer and interrupt controller

timer_callback

- Checks timer type

If timeout {

}

If backoff {

}

- If maximum retransmissions reached, returns

- If not, starts a backoff timer

warpmac_startPhyXmit

- Disables packet detection

- Starts radio controller's transmit state machine

warpmac_finishPhyXmit

- Polls PHY and waits for it to complete

- Enables packet detection and radio reception

- Starts a timeout timer

warpmac_prepPhyForXmit

- Configures PHY

- Copies Macframe header into PHY's buffer

- Increments retransmission counter

WARPMAC

User-Code



OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET



OTHER

SELF

DATA ACK

Transmit States

Receive States

Timer States

BUSYIDLE TIMEOUTBACKOFF

Idle

Destination 

Address

Set TIMEOUT 

Timer

Packet Type

Clear TIMEOUT

Timer Type

Set BACKOFF

Timer

Set TIMEOUT 

Timer

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Process timer

expiration

Transmit DATA

via PHY

Transmit ACK

via PHY
Increment 

Resend Counter

Transmit DATA

via PHY

Drop Packet

Medium 

State

Set BACKOFF 

Timer

Maximum 

Resends

MET
NOT

MET

All the preceding pseudocode translates 
naturally to the C-code in the Reference Design:

http://warp.rice.edu/trac/browser/ResearchApps/
MAC/CSMAMAC/csmaMac.c

http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c
http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c
http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c
http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c


Macframe:
phyHeader header /* Another struct */
unsigned char isNew /* Flag for new packets */

WARPMAC Structs

Fully documented in API (http://warp.rice.edu/WARP_API)

http://warp.rice.edu/WARP_PI
http://warp.rice.edu/WARP_PI


phyHeader:
! unsigned char fullRate; /* Payload modulation rate */
! unsigned char codeRate; /* Coding rate */
! unsigned short int length; /* Payload length */
! unsigned char pktType; /* Packet type */
! unsigned char destAddr[6]; /* Destination address */
! unsigned char srcAddr[6]; /* Source address */
! unsigned char currReSend; /* Re-send count */
! unsigned char reserved1; /* Unused */
! unsigned char reserved2; /* Unused */
! unsigned char reserved3; /* Unused */
! unsigned short int checksum; /* CRC placeholder */

WARPMAC Structs

Fully documented in API (http://warp.rice.edu/WARP_API)

http://warp.rice.edu/WARP_PI
http://warp.rice.edu/WARP_PI


Questions?



Lab Exercises

• Lab 4 - noMAC: Too simple to be a MAC

• Lab 5 - halfMAC: Receive-half of a MAC

• Lab 6 - hopMAC: Channel-hopping extension



noMac

Transmit States

Receive States

Idle

Deliver Packet to 

Sink

Accept Packet 

from Source
Receive Packet

via PHY

Transmit DATA

via PHY

To test your noMac code, ping 10.0.0.20



Questions?

Remember to use the API:
http://warp.rice.edu/WARP_API

http://warp.rice.edu/WARP_PI
http://warp.rice.edu/WARP_PI


halfMac

Transmit States

Receive States

Idle

Accept Packet 

from Source
Receive Packet

via PHY

Transmit DATA

via PHY

SELF

Packet Type

Destination

Address

Deliver Packet to 

Sink

Transmit ACK

via PHY

DATA

OTHER

OTHER



halfMac

Node 0 192.168.1.20

Node 1 192.168.1.1

Node 2 192.168.1.2

Node 3 192.168.1.3

Node 4 192.168.1.4

Node 16 192.168.1.16

Node 5 192.168.1.5

..
.

UDP Audio



Node 5

Least Significant Bit (LSB)

Most Significant Bit (MSB)

halfMac



Questions?

Remember to use the API:
http://warp.rice.edu/WARP_API

http://warp.rice.edu/WARP_PI
http://warp.rice.edu/WARP_PI


hopMac



hopMac

Transmit States

Receive States

Idle

Accept Packet 

from Source
Receive Packet

via PHY

Transmit DATA

via PHY

SELF

Packet Type

Destination

Address

Deliver Packet to 

Sink

Transmit ACK

via PHY

DATA

OTHER

OTHER
Switch Channels

HOPPACKET



Questions?

Remember to use the API:
http://warp.rice.edu/WARP_API

http://warp.rice.edu/WARP_PI
http://warp.rice.edu/WARP_PI


Logistics

• Contacting us

• Support & technical questions

• http://warp.rice.edu/forums/

• Hardware sales

• Mango Communications (http://mangocomm.com/)

http://mangocomm.com
http://warp.rice.edu/forums/
http://warp.rice.edu/forums/
http://mangocomm.com

