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Today’s Agenda

• Outstanding questions?

• Networking on WARP lecture

• Labs 4, 5, and 6

• Workshop wrap-up
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The OSI Model

Our Focus: Medium Access Control
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• Why?

• All commercial 802.11 chipsets are closed

• Many opportunities for cross-layer research

Physical
Link

Network
Transport
Session

Presentation
Application

The OSI Model



Outline

• Overview of Medium Access Control 

• Design Realization

• Example

• Lab Exercises



Medium Access 
Control Overview
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Random Backoffs

• PROBLEM: 
Retransmissions can 
collide ad infinitum!

• SOLUTION: Wait a 
random amount of time 
before a retransmit

0 1 2 3 4 5

8

16

24

32

40

Contention Window
increases over time



Important Extensions

• Carrier Sense Multiple Access (CSMA)

• Listen to the medium before sending

• Request to Send / Clear to Send (RTS/CTS)

• “Reserve” the medium with a short 
packet before sending a long one



Design Realization
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Hardware
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Design Realization

• No way to “lock” the 
framework and have it 
support all possible 
future MAC layers

WARPMAC

Framework

Solution: WARPMAC must grow with new algorithms

Problem: How do we maintain sync between designs?
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Reference Designs
• Snapshots of the WARP repository

• Free, open-source releases at regular intervals

• Today’s exercises are on nearly-released 
Reference Design v12

• Keeps pace with Xilinx design tools

• Reference design is an example of:

• a working PHY

• a working MAC

• the way all the pieces fit together
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PHY Driver:

• Configure very low-level parameters

• Correlation thresholds

• FFT scaling parameters

• Filter coefficients

• Etc.
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Radio Controller Driver:

• Set center frequency

• Switch from Rx to Tx mode and vice versa
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WARPPHY

User Code
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PHY Control:

• Provides control over PHY commonalities

• General initialization command

• Configure constellation order

• “Start” and “Stop” the PHY
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Completely PHY 
dependent

Mostly PHY 
agnostic
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MAC Control:

• Provides control over MAC commonalities

• Timers for timeouts, backoffs, etc.

• Carrier-sensing functions

• Register user callbacks to ISRs

• Etc.
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WARPMAC
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User-level MAC Algorithms:

• High-level MAC algorithms

• Some examples so far:

• Aloha

• Carrier-sensing MAC

• Opportunistic Auto-Rate (OAR)

• MAC Workshop Exercises
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An example: CSMA

• Carrier-sensing Multiple Access

• Serves as a foundation for a large class of 
other random access protocols

• Fairly simple algorithm
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Transmit States
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Transmit States
emacRx_int_handler

- Starts DMA transfer from EMAC to PHY

emacRx_callback

- Constructs Macframe header for data packet

warpmac_prepPhyForXmit

- Configures PHY

- Copies Macframe header into PHY's buffer

warpmac_startPhyXmit

- Disables packet detection

- Starts radio controller's transmit state machine

warpmac_finishPhyXmit

- Polls PHY and waits for it to complete

- Enables packet detection and radio reception

- Starts a timeout timer

- Clears EMAC and interrupt controller

If medium is idle {

}

If medium is busy {

}
- Starts a backoff timer

WARPMAC

User-Code
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Receive States
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Receive States
phyRx_goodHeader_int_handler

- Copies header into Macframe

phyRx_goodHeader_callback

- Checks address/type fields of Macframe header

If data {

warpmac_prepPhyForXmit

- Configures PHY

- Copies Macframe header into PHY's buffer

- Polls PHY receiver and waits for a "Good" or "Bad" state

warpmac_startPhyXmit

- Disables packet detection

- Starts radio controller's transmit state machine

warpmac_prepEmacForXmit

- Starts DMA transfer from PHY to EMAC

warpmac_finishPhyXmit

- Polls PHY and waits for it to complete

- Enables packet detection and radio reception

warpmac_startEmacXmit

- Polls DMA and waits for it to complete

- Starts EMAC transmission

 }

- Clears interrupts in PHY and interrupt controller

If Good {

- Constructs an ACK Macframe to prepare for a complete Rx packet

}

If acknowledgment {

}
- Clears timeout timer

WARPMAC

User-Code



Receive States
phyRx_goodHeader_int_handler

- Copies header into Macframe

phyRx_goodHeader_callback

- Checks address/type fields of Macframe header

If data {

warpmac_prepPhyForXmit

- Configures PHY

- Copies Macframe header into PHY's buffer

- Polls PHY receiver and waits for a "Good" or "Bad" state

warpmac_startPhyXmit

- Disables packet detection

- Starts radio controller's transmit state machine

warpmac_prepEmacForXmit

- Starts DMA transfer from PHY to EMAC

warpmac_finishPhyXmit

- Polls PHY and waits for it to complete

- Enables packet detection and radio reception

warpmac_startEmacXmit

- Polls DMA and waits for it to complete

- Starts EMAC transmission

 }

- Clears interrupts in PHY and interrupt controller

If Good {

- Constructs an ACK Macframe to prepare for a complete Rx packet

}

If acknowledgment {

}
- Clears timeout timer

WARPMAC

User-Code

Fast Turn-Around Time
(TAT)
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Timer States
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Timer States
timer_int_handler

- Clears interrupts in timer and interrupt controller

timer_callback

- Checks timer type

If timeout {

}

If backoff {

}

- If maximum retransmissions reached, returns

- If not, starts a backoff timer

warpmac_startPhyXmit

- Disables packet detection

- Starts radio controller's transmit state machine

warpmac_finishPhyXmit

- Polls PHY and waits for it to complete

- Enables packet detection and radio reception

- Starts a timeout timer

warpmac_prepPhyForXmit

- Configures PHY

- Copies Macframe header into PHY's buffer

- Increments retransmission counter

WARPMAC

User-Code
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All the preceding pseudocode translates 
naturally to the C-code in the Reference Design:

http://warp.rice.edu/trac/browser/ResearchApps/
MAC/CSMAMAC/csmaMac.c

http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c
http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c
http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c
http://warp.rice.edu/trac/browser/ResearchApps/MAC/CSMAMAC/csmaMac.c


Macframe:
phyHeader header /* Another struct */
unsigned char isNew /* Flag for new packets */

WARPMAC Structs

Fully documented in API (http://warp.rice.edu/WARP_API)

http://warp.rice.edu/WARP_PI
http://warp.rice.edu/WARP_PI


phyHeader:
! unsigned char fullRate; /* Payload modulation rate */
! unsigned char codeRate; /* Coding rate */
! unsigned short int length; /* Payload length */
! unsigned char pktType; /* Packet type */
! unsigned char destAddr[6]; /* Destination address */
! unsigned char srcAddr[6]; /* Source address */
! unsigned char currReSend; /* Re-send count */
! unsigned char reserved1; /* Unused */
! unsigned char reserved2; /* Unused */
! unsigned char reserved3; /* Unused */
! unsigned short int checksum; /* CRC placeholder */

WARPMAC Structs

Fully documented in API (http://warp.rice.edu/WARP_API)
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Questions?



Lab Exercises

• Lab 4 - noMAC: Too simple to be a MAC

• Lab 5 - halfMAC: Receive-half of a MAC

• Lab 6 - hopMAC: Channel-hopping extension
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To test your noMac code, ping 10.0.0.20



Questions?

Remember to use the API:
http://warp.rice.edu/WARP_API
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halfMac

Node 0 192.168.1.20

Node 1 192.168.1.1

Node 2 192.168.1.2

Node 3 192.168.1.3

Node 4 192.168.1.4

Node 16 192.168.1.16

Node 5 192.168.1.5

..
.

UDP Audio
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halfMac



Questions?

Remember to use the API:
http://warp.rice.edu/WARP_API
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hopMac
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Questions?

Remember to use the API:
http://warp.rice.edu/WARP_API
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Logistics

• Contacting us

• Support & technical questions

• http://warp.rice.edu/forums/

• Hardware sales

• Mango Communications (http://mangocomm.com/)
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