Questions From Labs 1 & 2?
PHY Design - Outline

• Physical Layer Overview
• Integrating Physical Layer Designs
• Lab 3: Building a Simple Transceiver
Physical Layer Basics

- Physical Layer
- Link
- Network
- Transport
- Session
- Presentation
- Application
Physical Layer Basics

- Application
- Presentation
- Session
- Transport
- Network
- Link
- Physical
- Hardware
Physical Layer Basics

- Physical
- Hardware
- Link
- Network
- Transport
- Session
- Presentation
- Application
Physical Layer Basics

Hardware

Physical

Link

Network

Transport

Session

Presentation

Application

TCP/UDP

IP

MAC

Physical

Hardware

Application
Physical Layer Basics

INFORMATION

PHY

Radio
Physical Layer Basics

Application Dependent
(Bytes, Packets, Waveforms, etc.)

INFORMATION

PHY

Radio
Physical Layer Basics

INFORMATION

PHY

Radio

Always Waveforms & Control
Physical Layer in Hardware

- Processor
- Physical Layer Design
- Radio Controller
- WARP Radio Board

Connections:
- I/Q From ADCs
- I/Q To DACs
- Tx/Rx Gains
- RSSI From ADC
- Radio Control
Radio interface is real-time

PHY/radio interface uses FPGA logic

Many options for “information” source
PHY-Radio Interface

- Two 14-bit samples (I/Q) at 40MSps
- Direct sampling of radio I/Q outputs
- Radio settings are very important
• Two 16-bit samples (I/Q) at 40MSps
• Direct sampling to radio I/Q inputs
- Four variable-gain amplifiers in Tx/Rx paths
- All under FPGA control
PHY-Radio Interface

Tx Gains

- Antenna Switch
- Control Registers
- PLL
- RF Variable Gain Amplifier (VGA)
- Baseband Amplifiers

TX OUTPUT POWER vs. GAIN SETTINGS

(MAX2829 datasheet pg. 17)
PHY-Radio Interface

Rx Gains

<table>
<thead>
<tr>
<th>RX VOLTAGE GAIN vs. BASEBAND GAIN SETTINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAIN SETTINGS</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>LNA = LOW GAIN</td>
</tr>
<tr>
<td>LNA = MEDIUM GAIN</td>
</tr>
<tr>
<td>LNA = HIGH GAIN</td>
</tr>
<tr>
<td>LNA = LOW GAIN</td>
</tr>
</tbody>
</table>

(MAX2829 datasheet pg. 15)
PHY-Radio Interface

Rx Gains

RX EVM vs. P_{IN}

- LNA = HIGH GAIN
- LNA = LOW GAIN
- LNA = MEDIUM GAIN

(MAX2829 datasheet pg. 16)
PHY-Radio Interface

Rx Gains

RX EVM vs. PIN

(MAX2829 datasheet pg. 16)
PHY-Radio Interface

- 10-bit samples at 10Mspses
- Direct sampling of radio’s RSSI output
PHY-Radio Interface

RX RSSI OUTPUT vs. INPUT POWER

(MAX2829 datasheet pg. 16)
PHY-Radio Interface

RX RSSI OUTPUT vs. INPUT POWER

(MAX2829 datasheet pg. 16)
PHY-Radio Interface

RSSI

RF Transceiver (MAX2829)

A/D Converter (AD9200)

0.5v \Rightarrow RSSI_ADC[9:0] = 0
2.5v \Rightarrow RSSI_ADC[9:0] = 1023

RX RSSI OUTPUT vs. INPUT POWER

LNA = LOW GAIN
LNA = MEDIUM GAIN
LNA = HIGH GAIN

(Max2829 datasheet pg. 16)
PHY-Radio Interface

RSSI

- **RF Transceiver (MAX2829)**
- **A/D Converter (AD9200)**

0.5v \Rightarrow RSSI_ADC[9:0] = 0
2.5v \Rightarrow RSSI_ADC[9:0] = 1023
- PHY is a memory mapped peripheral
- Uses both registers and memory blocks
- Bus interface is generated automatically
PHY-Processor Interface

Software sees 32-bit memory space

Hardware sees 32 wires per address
PHY-Processor Interface

Example

![Diagram of Carrier Sensing Logic]

CS_THRESH

RSSI

Running Average

BUSY

Carrier Sensing Logic
PHY-Processor Interface

Example

PHY uses memory-mapped wires for:

0x80000000

Carrier Sensing Logic

CS_THRESH

10

RSSI

10

Running Average

> BUSY

PHY uses memory-mapped wires for:
PHY-Processor Interface

Example

PHY uses memory-mapped wires for:

- Parameters

Carrier Sensing Logic

CSI_THRESH

0x80000000

RSSI

Running Average

BUSY

10

10
PHY-Processor Interface

Example

PHY uses memory-mapped wires for:

- Parameters
- Feedback

Carrier Sensing Logic

- CS_THRESH
- CS_BUSY

0x80000000

Running Average

\[\text{RSSI} > \text{BUSY} \]
PHY-Processor Interface

Example

PHY uses memory-mapped wires for:
- Parameters
- Feedback
- Control

![Diagram showing PHY-Processor Interface](image)
PHY-Processor Interface

• Hardware/software ≠ PHY/MAC
• Some MAC functions in logic
• Some PHY control in software
• Parameterization vs. complexity is tradeoff
• Easier to iterate on software
• Designing flexible hardware is tricky
Transceiver Examples

- WARPLab
- MIMO OFDM
Transceiver Examples

WARPLab Transceiver

- Application provides digital waveforms
- Transceiver handles radio data I/O
- Software handles radio control
- Application provides packets & parameters
- PHY processes waveforms and radio I/O
- All processing is real-time
Transceiver Examples

OFDM Transmitter

Packet Buffer → CRC Calculation → Modulation → Training Symbols → IFFT → Preamble → Cyclic Extension → Interpolation → I/Q to DACs

OFDM Receiver

RSSI from ADC → PHY Control → Packet Detection → AGC → Rx Gains → CFO Correction → Cyclic Prefix Removal → FFT → Channel Estimation → Equalization → Demodulation → Packet Buffer
Questions?
(Lab 3 is next)
Lab 3: Simple Transceiver

- Build a simple transmitter in Sysgen
- Convert the model to a PLB peripheral
- Connect the Tx core to the radio bridge
- Test the model at RF
- Add an RSSI-based receiver
- Update the hardware and test