

IEEE DySPAN’11 WARP Tutorial – Part II

A Compiler Assisted Approach for MAC

Protocol Realization

Institute for Networked Systems,
RWTH Aachen University

Institute for Networked Systems, RWTH Aachen University, Germany

A Compiler Assisted Tool-Chain for MAC Protocol Realization

1. Introduction

This section of the tutorial intends to give user hands-on-experience of

TRUMP – a compiler assisted tool-chain for fast MAC protocol realization

on WARP. We will be using a “drag and drop” Graphical User Interface (GUI)

to auto-generate the corresponding MAC meta-language code which is

sent to the WARP board over the UART interface. The code is then

translated by a compiler running on the host WARP board to realize the

corresponding MAC protocol. The flow of the tool-chain is shown in

Figure. 1.

Figure 1: Design and execution flow of TRUMP

In our framework, a library of basic MAC components is provided through

the GUI. These MAC components are identified by analyzing different

types of MAC protocols and serve as the fundamental MAC building

blocks. Our framework is implemented based on the OFDM Reference

Design v14 on WARP v1 board.

Institute for Networked Systems, RWTH Aachen University, Germany

A Compiler Assisted Tool-Chain for MAC Protocol Realization

In this tutorial session, we will implement a spectrum agile MAC protocol

based on the multi-channel preamble reservation scheme using the GUI.

For simplicity, we have divided the state diagram of the MAC protocol

into transmission and reception parts as shown in Figure 2 and Figure 3,

respectively.

Figure 2. The transmitter state diagram a simple spectrum agile MAC.

Institute for Networked Systems, RWTH Aachen University, Germany

A Compiler Assisted Tool-Chain for MAC Protocol Realization

Figure 3: The receiver state diagram of simple spectrum agile MAC.

Institute for Networked Systems, RWTH Aachen University, Germany

A Compiler Assisted Tool-Chain for MAC Protocol Realization

2. Instructions

1. Open the GUI interface.

2. Select “for warp”.

3. Select “new block diagram”.

4. Create a transmitter followed by a receiver based on Figures 2 & 3

using the designated channels as shown at your workstation. The

description of each library component and the parameters associated is

listed in Appendix A.

5. Download your file to the WARP board using the “New” button.

6. One may also start/stop the MAC execution through the GUI.

7. One may use the function “ReportTxRxPkt” in the program to plot the

transmission and reception throughput. To start plotting, one needs to 1)

start tests.sln from folder Matlab_cpp_warp_interface, 2) Execute Matlab

script TcpConnToWARP('127.0.0.1','1300')

Institute for Networked Systems, RWTH Aachen University, Germany

A Compiler Assisted Tool-Chain for MAC Protocol Realization

3. Testing your MAC

One of the WARP boards is connected to a central server. It runs the same

MAC protocol as the one to be implemented in the tutorial. One may test

the implemented transmitter & receiver functionality by communicating

with the central board.

A signal generator is used to act as an interferer. One should be able to

observe that the MAC protocol is able to choose a non-jammed channel

and establish a transmitter-receiver link.

One can observe the difference of throughput by scanning different

number of channels, changing the packet size, changing carrier sensing

duration, etc.

Institute for Networked Systems, RWTH Aachen University, Germany

A Compiler Assisted Tool-Chain for MAC Protocol Realization

Appendix A:

TRUMP MAC WARP Board Library API for IEEE DySPAN Tutorial, May 2011.

Packet Creation

Functional API: int NewPacket(int pktType, int pktDest, int pktSize);

Inputs:

 Packet type: int pktType (DATA = 0; ACK = 1)

 Packet destination : int pktDest

 Packet size: int pktSize in Bytes

Return value: SUCCESS = 1; FAIL = 0

Description: Create a packet to the destination address with assigned packet size and
packet type with a unique sequence number.

Packet Transmission

Functional API: int SendPacket();

Inputs: None

Return value: SUCCESS = 1; FAIL = 0

Description: Send a packet which has been previously created by function NewPacket.

Packet Reception

Functional API: int WaitForPkt(int pktType, int waitDuration);

Inputs:

 Packet type: int pktType (DATA = 0; ACK = 1)

 Duration for packet waiting: int waitDuration in Milliseconds

Return value: SUCCESS = 1 (Packet received); FAIL = 0

Description: This function switches the radio to listening mode. A timer of
waitDuration is started at the beginning of the function. If no packet of the expected
pktType is received during the waitDuration, the timer times out and the function exits
with return value FAIL.

Institute for Networked Systems, RWTH Aachen University, Germany

A Compiler Assisted Tool-Chain for MAC Protocol Realization

Timer

Functional API: int Timer(int action, int timerID, duration, type,

precision);

Inputs:

 Timer action: int action

o Create = 0: create a timer with duration, type, precision

o Start = 1: start a timer that has been created. The duration of the timer can be
reset by stop and start the timer again.

o Stop = 2: stop a running timer.

o isRunning = 3: checks if the timer is running

o isFired = 4: wait for the timer to be fired

o Destroy = 5: By default all the timers are destroyed at the end of the MAC
execution. One can also voluntarily destroy a created timer if the timer is no
longer in use.

 TimerID: 1-8

 Timer duration: in either Microseconds or Milliseconds at indicated by precision

 Timer type: One_shot = 0, Periodic = 1;

 Timer precision: Millisecond=0, Microsecond = 1.

Return value: SUCCESS = 1; FAIL = 0;

Description: This function is used to assign tasks to a timer of TimerID. All parameters
are required when creating the timer, while only TimerID and action are required for
other operations.

Set a set of channels to be used by the protocol

Functional API: int SetChannelPool (int cha1, int cha2, int cha3, int
cha4);

Inputs: channel numbers: cha1, cha2, cha3, cha4.

Return value: SUCCESS = 1; FAIL = 0;

Description: This function is used to select the channels in 5GHz band to be used by
the protocol. Up to four channels can be selected. If not indicated, the default values for
the parameters are zero.

Institute for Networked Systems, RWTH Aachen University, Germany

A Compiler Assisted Tool-Chain for MAC Protocol Realization

Select the next available channel in the channel pool

Functional API: int SelectNextChannel();

Inputs: None

Return value: SUCCESS = 1; FAIL = 0

Description: This function switches the current frequency band to the next available in
the channel pool set by function SetChannelPool(). If channel pool is not set before the
execution of this function, function returns FAIL.

Selecting a frequency channel on a WARP board in 5GHz band

Functional API: void SelectChannel(unsigned char channel);

Inputs: The channel to be used, channel of type unsigned char. The specified channels
in 5GHz are:

1. 5180MHz

2. 5200MHz

3. 5220MHz

4. 5240MHz

5. 5260MHz

6. 5280MHz

7. 5300MHz

8. 5320MHz

9. 5500MHz

10. 5520MHz

11. 5540MHz

12. 5560MHz

13. 5580MHz

14. 5600MHz

15. 5620MHz

16. 5640MHz

17. 5660MHz

18. 5680MHz

Institute for Networked Systems, RWTH Aachen University, Germany

A Compiler Assisted Tool-Chain for MAC Protocol Realization

19. 5700MHz

20. 5745MHz

21. 5765MHz

22. 5785MHz

23. 5805MHz

Return value: none

Description: This function is used to specify the frequency channel to be used on a
WARP board. Before calling this function, the desired frequency band is selected.

Perform carrier sensing

Functional API: int CarrierSensing(int num, int slot);

Inputs:

 num: number of times, the carrier is to be sensed

 slot: value in microseconds and specifies the gap after which the carrier is sensed

Return value: 1 if the medium is free and 0 if the medium is false

Description: This function allows performing carrier sensing in a customized way with
controllable gap interval and number of carrier sensing sampling.

Report current statistics on packet transmission and packet reception

Functional API: int ReportTxRxPkt();

Inputs: None

Return value: SUCCESS = 1; FAIL = 0;

Description: Pushes statics on packets transmitted and received in terms of bit per
second to the Ethernet port.

