
Cognitive Wireless Networking with WARP

Part – II: Reconfigurable MAC Design

Junaid Ansari and Xi Zhang

Institute for Networked Systems

RWTH Aachen University, Germany
3rd May 2011

Institute for Networked Systems
RWTH Aachen University, Germany

Motivation

 Cognitive MAC protocols require fine-grained access
control over the PHY/MAC parameters and run-time
reconfiguration.

 Hardware-based MAC implementations are rigid and do
not provide the required flexibility.

 Software-based implementations on the contrary fail to
meet strict timing deadlines.

 A hardware-software co-design approach is desired in
order to simultaneously meet the timing deadlines and
provide the required flexibility.

Institute for Networked Systems
RWTH Aachen University, Germany

Component Oriented Design

 Concept: MAC protocols are decomposed into
fundamental functional components based on the
commonalities among different protocols.

 These components serve as the MAC building blocks.
 A particular MAC protocol is realized by (simply) binding

these components together.

MAC 1 MAC 2

Institute for Networked Systems
RWTH Aachen University, Germany

Fundamental MAC Building Blocks

 Timer functionalities

 Carrier sensing algorithms

 Radio state control

 Random number generation

 Framing and buffer management

 Sending frame

 Receiving frame

 …

Institute for Networked Systems
RWTH Aachen University, Germany

 Certain combinations and patterns of fundamental
blocks repeat across different protocol implementations.

 This leads to the concept of “Blocks of Blocks” or
secondary blocks.

 The design philosophy is similar to LEGOS.

Advanced Building Blocks

Institute for Networked Systems
RWTH Aachen University, Germany

Random Backoff – a Closer Look

Institute for Networked Systems
RWTH Aachen University, Germany

Commonly Used Secondary Blocks

Institute for Networked Systems
RWTH Aachen University, Germany

Realization of IEEE 802.11 DCF

Institute for Networked Systems
RWTH Aachen University, Germany

MAC Realization Toolchain

 Wiring Engine to bind the MAC components and
coordinate the control and data flow among
components.

 MAC meta-language to describe the MAC design.

 A (host) compiler to convert the MAC language to
executable code on a particular target platform.

 Interactive Graphical User Interface (GUI) to ease the
MAC designing process.

Institute for Networked Systems
RWTH Aachen University, Germany

Toolchain Assisted MAC Designing Process

Institute for Networked Systems
RWTH Aachen University, Germany

MAC Compilation and Execution

Institute for Networked Systems
RWTH Aachen University, Germany

MAC Meta-language

 C-like syntax

 Variable and constant declarations: VAR, CONST.

 Conditional branching: IF, ELSE , ENDIF.

 Loops: LABEL, GOTO.

 All the MAC functions are wrapped with a standard
component API: int function (void *para).

 Extendable grammar and functions.

Institute for Networked Systems
RWTH Aachen University, Germany

Meta-compiler

 A scanner to scan the program file to recognize
keywords and tokens.

 A parser to determine the grammatical structure and
checks for syntax errors.

 A code generator for generating executable code
accordingly for the target platform.

 Compiler is written using Lex & Yacc.

Institute for Networked Systems
RWTH Aachen University, Germany

A B

D
 HEAD

C

Insert Element C

A B

D

HEAD

A

B

D

E

F

2

2

1

1

1

Dependency Table

 for Element C

C

Current Function List Function List after Insertion

2: append after

1: insert before

0: independent

 Modifying protocol == modifying function linked list.

 Allows on-the-fly re-configuration by block insertion,
removal and re-wiring w.r.t. their dependency tables.

 Built-in optimizer assisted reconfiguration.

 User triggered reconfiguration.

Rapid Protocol Reconfiguration

Institute for Networked Systems
RWTH Aachen University, Germany

IDE for Rapid Protocol Development

15

Generated

code in MAC

language

Toolbar
Flow control and

MAC design logic

Communication

with target platform

Designer Pane

Institute for Networked Systems
RWTH Aachen University, Germany

In a nut-shell…

 Enables fast protocol development.

 Allows code re-use and minimizes efforts.

 Opens wider experimental room.

 Enables run-time reconfiguration.

Institute for Networked Systems
RWTH Aachen University, Germany

Let’s get our hands dirty…

 You will get the handouts for detailed description …

 Task: Developing a simple Spectrum Agile MAC

WARP Laboratory Setup

Institute for Networked Systems
RWTH Aachen University, Germany

Transmitter/Receiver Design

Institute for Networked Systems
RWTH Aachen University, Germany

Component APIs

19

…

Questions?

Backup slides

Institute for Networked Systems
RWTH Aachen University, Germany

Implementation Details on WARP

User MAC code

Framework object interface

Virtual component code
Object state

information

Hardware

scheduler

Platform-specific drivers

Hardware

© http://warp.rice.edu/trac

Institute for Networked Systems
RWTH Aachen University, Germany

Meta-compiler -cntd.-

Institute for Networked Systems
RWTH Aachen University, Germany

Memory Management

Institute for Networked Systems
RWTH Aachen University, Germany

Example: Timer Interface

 Commands:
 start() starts a timer.
 stop() stops a timer if the timer is not expired yet.
 suspend() suspends the running of a timer until it is resumed.
 resume() resumes the running of a timer after the suspension.
 getStart() returns start time of the timer
 getDuration() returns timer duration
 getStatus() returns the current status of a timer (running, suspended, etc.)

 Input Parameters:
 Type

 One shot timer
 Periodic timer

 Precision
 Millisecond
 Microsecond

 Output:
 Signals when timer expires.

