
Lab 6: hopMac

Chris Hunter

Rice University

WARP Project

Document Revision 6

November 3, 2007



Lab 6: hopMac

1 Introduction

In the previous lab, a central transmitter streamed UDP audio to each of the participants’ PCs in a
topology shown by Figure 1.

Node 0 192.168.1.20

Node 1 192.168.1.1

Node 2 192.168.1.2

Node 3 192.168.1.3

Node 4 192.168.1.4

Node 16 192.168.1.16

Node 5 192.168.1.5

...

UDP Audio

Figure 1: Lab Topology

This lab will have an identical configuration. The twist here, however, is that the transmitter will
periodically hop to a different center frequency (numbered 1 through 11). Before doing so, it will
broadcast a special “HOPPACKET” packet to notify users that the transmitter is about to hop and
to what channel. If your MAC algorithm is coded properly, your node should hop frequencies to
follow the central transmitter in its journey through the spectrum. At the application level, the audio
stream should be maintained, and the frequency hopping should be indiscernible.

The user’s code is responsible for all of the behavior of the previous lab. You can use your
completed code, or you can use the completed code provided. Additionally, you are responsible for
the following behavior:

• If the packet was sent to the wireless broadcast MAC address (255:255:255:255:255:255),
and it was a “HOPPACKET” type, switch to the channel specified in the packet header. We
use the Macframe.header field ’reserved1’ to hold this value. The critical elements of the
HOPPACKET Macframe are shown in Figure 2. Refer to the WARP API documentation
(http://warp.rice.edu/WARP API) for details on the full MacFrame structure definition.

Macframe FollowMe;

FollowMe.header.pktType = HOPPACKET;
FollowMe.header.fullRate = 2;
FollowMe.header.reserved1 = NewWirelessChannel; //This is your target channel
FollowMe.header.length = 0; // Payload length , not including header
FollowMe.header.destAddr = {0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF};
...

Figure 2: The HOPPACKET Macframe structure.

The full software state of the client node is shown in Figure 3.
It is important to note that, while the transmitter has a MAC capable of retransmissions, your

MAC implementation will not. Because of the unidirectional nature of UDP, the only Ethernet traffic

ver. 6: 3-Nov-2007 http://warp.rice.edu 1

http://warp.rice.edu/WARP_API/files.html
http://warp.rice.edu


Lab 6: hopMac

which will be forwarded to node 0 is an ARP reply to establish the Ethernet MAC address lookup
tables on both PCs.

The WARPMAC API will be required throughout this lab exercise. Skeleton code is provided
which compiles without user modification and implements the behavior of the previous lab. By
default, the project will blink user LEDs on the board upon the reception of packets that pass the
checksum. The skeleton code contains helpful comments to guide your implementation.

2 Extensions

• Gather statistics on a per-channel basis. Can you infer channel conditions using aggregate
statistics at the MAC layer?

• If your node misses the HOPPACKET packet, it will wait in its channel until the transmitter hap-
pens to jump back in to that channel. Try to infer when this occurs by listening for packets. If
no packets have been received for some time, assume you lost sync. Can you sweep through
the spectrum and try to lock back on? The PowerPC natively supports some timing functions,
but the resulting code will be a lot easier if you use the ofdm timer custom peripheral in the
model. See how csmaMac.c and warpmac.c handle the use of that core.

ver. 6: 3-Nov-2007 http://warp.rice.edu 2

http://warp.rice.edu


Lab 6: hopMac

YES

NO

NONO

YESYES

Idle

Packet from 
Ethernet?

Packet from 
OFDM?

Send data to 
known TX via 

OFDM

Addressed to me
or broadcast?

NO

Send data to 
ethernet

Send ACK to 
known TX via 

OFDM

YES

FOLLOW? Switch Channel

Figure 3: State diagram for frequency-hopping MAC

ver. 6: 3-Nov-2007 http://warp.rice.edu 3

http://warp.rice.edu

	1 Introduction
	2 Extensions

