%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Transmitting and Receiving Data using WARPLab (4x4 MIMO configuration) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % To run this M-code the boards must be programmed with the % 4x4 MIMO 5.x version of WARPLab bitstream % The specific steps implemented in this script are the following % 0. Initializaton and definition of parameters % 1. Generate a vector of samples to transmit and send the samples to the % WARP board (Sample Frequency is 40MHz) % 2. Prepare WARP boards for transmission and reception and send trigger to % start transmission and reception (trigger is the SYNC packet) % 3. Read the received samples from the Warp board % 4. Reset and disable the boards % 5. Plot the transmitted and received data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 0. Initializaton and definition of parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Load some global definitions (packet types, etc.) warplab_defines % Create Socket handles and intialize nodes [socketHandles, packetNum] = warplab_initialize; % Separate the socket handles for easier access % The first socket handle is always the magic SYNC % The rest of the handles are the handles to the WARP nodes udp_Sync = socketHandles(1); udp_node1 = socketHandles(2); udp_node2 = socketHandles(3); % Define WARPLab parameters. TxDelay = 1000; % Number of noise samples per Rx capture. In [0:2^14] TxLength = 2^14-1-1000; % Length of transmission. In [0:2^14-1-TxDelay] TxMode = 0; % Transmission mode. In [0:1] % 0: Single Transmission % 1: Continuous Transmission. Tx board will continue % transmitting the vector of samples until the user manually % disables the transmitter. CarrierChannel = 12; % Channel in the 2.4 GHz band. In [1:14] Node1_Radio1_TxGain_BB = 3; % Tx Baseband Gain. In [0:3] Node1_Radio1_TxGain_RF = 40; % Tx RF Gain. In [0:63] Node1_Radio2_TxGain_BB = 3; % Tx Baseband Gain. In [0:3] Node1_Radio2_TxGain_RF = 40; % Tx RF Gain. In [0:63] Node1_Radio3_TxGain_BB = 3; % Tx Baseband Gain. In [0:3] Node1_Radio3_TxGain_RF = 40; % Tx RF Gain. In [0:63] Node1_Radio4_TxGain_BB = 3; % Tx Baseband Gain. In [0:3] Node1_Radio4_TxGain_RF = 40; % Tx RF Gain. In [0:63] Node2_Radio1_RxGain_BB = 12; % Rx Baseband Gain. In [0:31] Node2_Radio1_RxGain_RF = 1; % Rx RF Gain. In [1:3] Node2_Radio2_RxGain_BB = 12; % Rx Baseband Gain. In [0:31] Node2_Radio2_RxGain_RF = 1; % Rx RF Gain. In [1:3] Node2_Radio3_RxGain_BB = 12; % Rx Baseband Gain. In [0:31] Node2_Radio3_RxGain_RF = 1; % Rx RF Gain. In [1:3] Node2_Radio4_RxGain_BB = 12; % Rx Baseband Gain. In [0:31] Node2_Radio4_RxGain_RF = 1; % Rx RF Gain. In [1:3] % Note: For this experiment node 1 will be set as the transmitter and node % 2 will be set as the receiver (this is done later in the code), hence, % there is no need to define receive gains for node1 and there is no % need to define transmitter gains for node2. Node2_MGC_AGC_Select = 0; % Set MGC_AGC_Select=1 to enable Automatic Gain Control (AGC). % Set MGC_AGC_Select=0 to enable Manual Gain Control (MGC). % By default, the nodes are set to MGC. % Download the WARPLab parameters to the WARP nodes. % The nodes store the TxDelay, TxLength, and TxMode parameters in % registers defined in the WARPLab sysgen model. The nodes set radio % related parameters CarrierChannel, TxGains, and RxGains, using the % radio controller functions. % The TxDelay, TxLength, and TxMode parameters need to be known at the transmitter; % the receiver doesn't require knowledge of these parameters (the receiver % will always capture 2^14 samples). For this exercise node 1 will be set as % the transmitter (this is done later in the code). Since TxDelay, TxLength and % TxMode are only required at the transmitter we download the TxDelay, TxLength and % TxMode parameters only to the transmitter node (node 1). warplab_writeRegister(udp_node1,TX_DELAY,TxDelay); warplab_writeRegister(udp_node1,TX_LENGTH,TxLength); warplab_writeRegister(udp_node1,TX_MODE,TxMode); % The CarrierChannel parameter must be downloaded to all nodes warplab_setRadioParameter(udp_node1,CARRIER_CHANNEL,CarrierChannel); warplab_setRadioParameter(udp_node2,CARRIER_CHANNEL,CarrierChannel); % Node 1 will be set as the transmitter so download Tx gains to node 1. warplab_setRadioParameter(udp_node1,RADIO1_TXGAINS,(Node1_Radio1_TxGain_RF + Node1_Radio1_TxGain_BB*2^16)); warplab_setRadioParameter(udp_node1,RADIO2_TXGAINS,(Node1_Radio2_TxGain_RF + Node1_Radio2_TxGain_BB*2^16)); warplab_setRadioParameter(udp_node1,RADIO3_TXGAINS,(Node1_Radio3_TxGain_RF + Node1_Radio3_TxGain_BB*2^16)); warplab_setRadioParameter(udp_node1,RADIO4_TXGAINS,(Node1_Radio4_TxGain_RF + Node1_Radio4_TxGain_BB*2^16)); % Node 2 will be set as the receiver so download Rx gains to node 2. warplab_setRadioParameter(udp_node2,RADIO1_RXGAINS,(Node2_Radio1_RxGain_BB + Node2_Radio1_RxGain_RF*2^16)); warplab_setRadioParameter(udp_node2,RADIO2_RXGAINS,(Node2_Radio2_RxGain_BB + Node2_Radio2_RxGain_RF*2^16)); warplab_setRadioParameter(udp_node2,RADIO3_RXGAINS,(Node2_Radio3_RxGain_BB + Node2_Radio3_RxGain_RF*2^16)); warplab_setRadioParameter(udp_node2,RADIO4_RXGAINS,(Node2_Radio4_RxGain_BB + Node2_Radio4_RxGain_RF*2^16)); % Set MGC mode in node 2 (receiver) warplab_setAGCParameter(udp_node2,MGC_AGC_SEL, Node2_MGC_AGC_Select); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 1. Generate a vector of samples to transmit and send the samples to the % WARP board (Sample Frequency is 40MHz) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Prepare some data to be transmitted t = 0:(1/40e6):TxLength/40e6 - 1/40e6; % Create time vector % Create a signal to transmit from radio 1, the signal can be real or complex. % The signal must meet the following requirements: % - Signal to transmit must be a row vector. % - The amplitude of the real part must be in [-1:1] and the amplitude % of the imaginary part must be in [-1:1]. % - Highest frequency component is limited to 9.5 MHz (signal bandwidth % is limited to 19 MHz) % - Lowest frequency component is limited to 30 kHz Node1_Radio1_TxData = exp(t*j*2*pi*1e6); % Create a signal to transmit from radio 2, the signal can be real or complex. % The signal must meet the following requirements: % - Signal to transmit must be a row vector. % - The amplitude of the real part must be in [-1:1] and the amplitude % of the imaginary part must be in [-1:1]. % - Highest frequency component is limited to 9.5 MHz (signal bandwidth % is limited to 19 MHz) % - Lowest frequency component is limited to 30 kHz Node1_Radio2_TxData = exp(t*j*2*pi*3e6); % Create a signal to transmit from radio 3, the signal can be real or complex. % The signal must meet the following requirements: % - Signal to transmit must be a row vector. % - The amplitude of the real part must be in [-1:1] and the amplitude % of the imaginary part must be in [-1:1]. % - Highest frequency component is limited to 9.5 MHz (signal bandwidth % is limited to 19 MHz) % - Lowest frequency component is limited to 30 kHz Node1_Radio3_TxData = exp(t*j*2*pi*5e6); % Create a signal to transmit from radio 4, the signal can be real or complex. % The signal must meet the following requirements: % - Signal to transmit must be a row vector. % - The amplitude of the real part must be in [-1:1] and the amplitude % of the imaginary part must be in [-1:1]. % - Highest frequency component is limited to 9.5 MHz (signal bandwidth % is limited to 19 MHz) % - Lowest frequency component is limited to 30 kHz Node1_Radio4_TxData = exp(t*j*2*pi*7e6); % Download the samples to be transmitted warplab_writeSMWO(udp_node1, RADIO1_TXDATA, Node1_Radio1_TxData); % Download samples to % radio 1 Tx Buffer warplab_writeSMWO(udp_node1, RADIO2_TXDATA, Node1_Radio2_TxData); % Download samples to % radio 2 Tx Buffer warplab_writeSMWO(udp_node1, RADIO3_TXDATA, Node1_Radio3_TxData); % Download samples to % radio 3 Tx Buffer warplab_writeSMWO(udp_node1, RADIO4_TXDATA, Node1_Radio4_TxData); % Download samples to % radio 4 Tx Buffer %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 2. Prepare WARP boards for transmission and reception and send trigger to % start transmission and reception (trigger is the SYNC packet) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The following lines of code set node 1 as transmitter and node 2 as % receiver; transmission and capture are triggered by sending the SYNC % packet. % Enable transmitter radio path in all radios in node 1 (enable all radios % in node 1 as transmitters) warplab_sendCmd(udp_node1, [RADIO1_TXEN ,RADIO2_TXEN, RADIO3_TXEN, RADIO4_TXEN], packetNum); % Enable transmission of node1's Tx buffers (enable % transmission of samples stored in all radio Tx buffers in node 1) warplab_sendCmd(udp_node1, [RADIO1TXBUFF_TXEN, RADIO2TXBUFF_TXEN, RADIO3TXBUFF_TXEN, RADIO4TXBUFF_TXEN], packetNum); % Enable receiver radio path in all radios in node 2 (enable all radios % in node 2 as receivers) warplab_sendCmd(udp_node2, [RADIO1_RXEN, RADIO2_RXEN, RADIO3_RXEN, RADIO4_RXEN], packetNum); % Enable capture in node2's Rx Buffers (enable all Rx buffers in node 2 % for storage of samples) warplab_sendCmd(udp_node2, [RADIO1RXBUFF_RXEN, RADIO2RXBUFF_RXEN, RADIO3RXBUFF_RXEN, RADIO4RXBUFF_RXEN], packetNum); % Prime transmitter state machine in node 1. Node 1 will be % waiting for the SYNC packet. Transmission from node 1 will be triggered % when node 1 receives the SYNC packet. warplab_sendCmd(udp_node1, TX_START, packetNum); % Prime receiver state machine in node 2. Node 2 will be waiting % for the SYNC packet. Capture at node 2 will be triggered when node 2 % receives the SYNC packet. warplab_sendCmd(udp_node2, RX_START, packetNum); % Send the SYNC packet warplab_sendSync(udp_Sync); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 3. Read the received samples from the Warp board %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Read back the received samples from radio 1 [Node2_Radio1_RawRxData] = warplab_readSMRO(udp_node2, RADIO1_RXDATA, TxLength+TxDelay); % Read back the received samples from radio 2 [Node2_Radio2_RawRxData] = warplab_readSMRO(udp_node2, RADIO2_RXDATA, TxLength+TxDelay); % Read back the received samples from radio 3 [Node2_Radio3_RawRxData] = warplab_readSMRO(udp_node2, RADIO3_RXDATA, TxLength+TxDelay); % Read back the received samples from radio 4 [Node2_Radio4_RawRxData] = warplab_readSMRO(udp_node2, RADIO4_RXDATA, TxLength+TxDelay); % Process the received samples to obtain meaningful data [Node2_Radio1_RxData,Node2_Radio1_RxOTR] = warplab_processRawRxData(Node2_Radio1_RawRxData); [Node2_Radio2_RxData,Node2_Radio2_RxOTR] = warplab_processRawRxData(Node2_Radio2_RawRxData); [Node2_Radio3_RxData,Node2_Radio3_RxOTR] = warplab_processRawRxData(Node2_Radio3_RawRxData); [Node2_Radio4_RxData,Node2_Radio4_RxOTR] = warplab_processRawRxData(Node2_Radio4_RawRxData); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 4. Reset and disable the boards %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Set all Tx buffers in node 1 back to Tx disabled mode warplab_sendCmd(udp_node1, [RADIO1TXBUFF_TXDIS, RADIO2TXBUFF_TXDIS, RADIO3TXBUFF_TXDIS, RADIO4TXBUFF_TXDIS], packetNum); % Disable the transmitter radios warplab_sendCmd(udp_node1, [RADIO1_TXDIS, RADIO2_TXDIS, RADIO3_TXDIS, RADIO4_TXDIS], packetNum); % Set all Rx buffers in node 2 back to Rx disabled mode warplab_sendCmd(udp_node2, [RADIO1RXBUFF_RXDIS, RADIO2RXBUFF_RXDIS, RADIO3RXBUFF_RXDIS, RADIO4RXBUFF_RXDIS], packetNum); % Disable the receiver radios warplab_sendCmd(udp_node2, [RADIO1_RXDIS, RADIO2_RXDIS, RADIO3_RXDIS, RADIO4_RXDIS], packetNum); % Close sockets pnet('closeall'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 5. Plot the transmitted and received data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% figure; subplot(4,2,1); plot(real(Node1_Radio1_TxData)); title('Tx Node 1 Radio 1 I'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. subplot(4,2,2); plot(imag(Node1_Radio1_TxData)); title('Tx Node 1 Radio 1 Q'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. subplot(4,2,3); plot(real(Node1_Radio2_TxData)); title('Tx Node 1 Radio 2 I'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. subplot(4,2,4); plot(imag(Node1_Radio2_TxData)); title('Tx Node 1 Radio 2 Q'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. subplot(4,2,5); plot(real(Node1_Radio3_TxData)); title('Tx Node 1 Radio 3 I'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. subplot(4,2,6); plot(imag(Node1_Radio3_TxData)); title('Tx Node 1 Radio 3 Q'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. subplot(4,2,7); plot(real(Node1_Radio4_TxData)); title('Tx Node 1 Radio 4 I'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. subplot(4,2,8); plot(imag(Node1_Radio4_TxData)); title('Tx Node 1 Radio 4 Q'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. figure; subplot(4,2,1); plot(real(Node2_Radio1_RxData)); title('Rx Node 2 Radio 1 I'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. subplot(4,2,2); plot(imag(Node2_Radio1_RxData)); title('Rx Node 2 Radio 1 Q'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. subplot(4,2,3); plot(real(Node2_Radio2_RxData)); title('Rx Node 2 Radio 2 I'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. subplot(4,2,4); plot(imag(Node2_Radio2_RxData)); title('Rx Node 2 Radio 2 Q'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. subplot(4,2,5); plot(real(Node2_Radio3_RxData)); title('Rx Node 2 Radio 3 I'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. subplot(4,2,6); plot(imag(Node2_Radio3_RxData)); title('Rx Node 2 Radio 4 Q'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. subplot(4,2,7); plot(real(Node2_Radio4_RxData)); title('Rx Node 2 Radio 4 I'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges. subplot(4,2,8); plot(imag(Node2_Radio4_RxData)); title('Rx Node 2 Radio 4 Q'); xlabel('n (samples)'); ylabel('Amplitude'); axis([0 2^14 -1 1]); % Set axis ranges.