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Abstract— Cognitive radios are becoming reality also in im-
plementation domain. Besides the need for hardware recon-
figurability and the capability to sense spectrum opportuni-
ties, adaptability in the MAC designs is required so that the
wireless communication systems can support cognitive radio
functionalities. In this demo paper, we introduce a MAC design
framework enabling fast composition of MAC protocols which
are best fitted to the application requirements, communication
capabilities of the radio, and current regulations and policies.
Our design is based on the decomposition principle and allows
on-the-fly realization of the required MAC protocol from a set
of basic functional components. By exposing extended meta-
data and hardware functionalities for the MAC implementation
through our granular components, together with the support for
run-time re-configuration, spectrum agile and cognitive MAC
solutions can be easily realized. We validate our approach
through realization of a few MAC solutions on the WARP board
originally from Rice University, USA. We also demonstrate the
ease of MAC realization, fast real-time adaptation based on the
spectral characteristics and high degree of code reuse.

I. INTRODUCTION

Cognitive radios are becoming an enabling technology for
efficiently managing the constrained spectral resources and
fulfilling varying degree of QoS demands. Intelligent manage-
ment of spectral resources and advanced sensing in medium
access procedures require high degree of adaptability and close
interaction between the PHY/MAC functionalities. Although
efforts have been made by the research community towards
providing re-configurable and dynamic solutions for MAC
realizations, the research still lacks a flexible framework for
rapid on-the-fly adaptation and access/control to fine-grained
radio/hardware functionalities. One of the practical shortcom-
ings in MAC development for dynamic spectrum access has
been that many platforms and their interfaces have restricted
accessibility (e.g. IEEE 802.11 NICs). On the other hand,
some of the more open SDR platforms such as WARP and
USRP boards provide only limited MAC functionalities. This
fact substantially curtails the development and experimental
room for cognitive MACs and networks. Most of the MAC
protocols are implemented in a monolithic fashion with tight
coupling to the underlying hardware. This restricts adaptation
and flexibility aspects required by spectrum agile and cognitive
MACs. In order to address the issue of re-configuration, a
few modular design approaches [1] have been proposed but
they either lack actual implementation or are incapable to
meet the real time requirements [2]. One of the major reasons
for their shortcomings is the pure software implementation,

which is unable to meet time-critical requirements as discussed
in [3]. Unlike the earlier multi-MAC approaches promising
reconfiguration aspects (e.g. [4]) which allows switching on
a few pre-defined standalone MACs, our framework allows
realizing a wide range of MAC implementations based on
fundamental and elementary building blocks. We define a set
of fundamental MAC functionalities as a library so that a
wide range of MAC protocols can easily be realized by simply
combining these functionalities in an appropriate manner. A
re-wiring engine is designed in order to bind individual MAC
functional blocks together and to coordinate the data/control
flow among the blocks for rapid run-time MAC realizations.
Profiling MAC implementations based on the fundamental
blocks also indicates the key atomic blocks/operations requir-
ing hardware acceleration, strict timing deadlines and high
communication burden. Consideration of these factors cer-
tainly improves the implementation. The fundamental blocks
expose wider hardware functionalities and leads to more
access/control to the PHY-MAC parameters. This facilitates
the design of cognitive MACs demanding higher degree of
PHY-MAC interaction [5].

II. DESIGN AND IMPLEMENTATION OF THE
DECOMPOSABLE MAC FRAMEWORK

A close interaction with the hardware interfaces and run-
time re-configuration are needed by cognitive radio developers.
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Fig. 1. Realization of IEEE 802.11 DCF using the elementary MAC blocks.
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Fig. 2. Realization of S-MAC using the elementary MAC blocks.

Our framework helps the CR-community in this regard by
providing extended hardware access/control interfaces and
enabling re-configuration through a re-wiring engine. We have
analyzed a wide range of MAC design approaches based
on CSMA, TDMA and hybrid principles and identify the
commonalities among different solutions. The commonalities
among the MACs are based on their functional nature and
their implementation specifics, e.g. timings, computational
complexity and the degree of component reuse in a particular
realization as well as across different protocols. With our
approach, the actual implementation is merely reduced to the
control/dataflow definitions using the elementary MAC blocks.
Fig. 1 and Fig. 2 show the realization of IEEE 802.11 DCF and
S-MAC, respectively. These figures also illustrate the concept
of MAC realizations using the same set of gray scale coded
fundamental blocks connected appropriately.

The elementary blocks in the framework are exposed
through well-defined flexible APIs (Application Programming
Interfaces), which in our demonstrator are implemented for
the WARP board. The wiring-engine is a mechanism in our
framework which is used to connect basic blocks according to
the defined MAC functionalities. The framework is designed to
be light-weight, enable code re-usage and minimize protocol
implementation effort. Compositional adaptation techniques
have been well investigated in Computer Science [6]. Our
wiring-engine is designed based on the usage of function
pointers. The construction and execute path of a state-machine
is dynamically redirected through modification of function
pointer assignments. It enables both run-time reconfiguration
of MAC protocols according to pre-defined rules within the
framework and on-the-fly realization of user configured pro-
tocols. For example, CarrierSense() is registered as the
callback function for a periodic timer in a duty cycle based
CSMA protocol. When the application requirements change
and the framework has decided to switch to TDMA based
protocol, the pointer to the callback function will be assigned

to SlotAssignment() for protocol transition according
to the already defined rules. This way hardware resources
can efficiently be reallocated to the new tasks. When the
user wishes to use a function which does not exist in the
library, she can define and add the function to the library using
addFunction() in a configuration file.

III. DEMONSTRATION DESCRIPTION AND CONCLUSIONS

In the demonstration, we will present the architecture of
the decomposable MAC framework and the identified MAC
elementary blocks exposed through flexible APIs. We will
demonstrate the ease of realizing a MAC protocol on the
WARP board using the framework and our tool-chain. We
base our implementation on the OFDM reference design v.14
based PHY for the WARP boards [7]. By expanding the
original reference design of the WARP board with interrupt
signalling capabilities, we are able to improve performance by
minimizing the event-response delays. The MAC adapts itself
on-the-fly depending on the changing spectral characteristics.
User controlled interference generated through a WLAN ac-
cess point (representing a primary user) will trigger the MAC
to switch channel and reconfigure itself at the run-time. The
reconfiguration includes DSA features with advanced carrier
sensing, usage of additional control frames and adjustments
of the backoff and persistency values in the protocol. In-
clusion/exclusion of the blocks and appropriate re-wirings
are required for this purpose. We show that our framework
is capable of performing rapid runtime reconfigurations and
bears high degree of code reuse in realizing different MAC
protocols. Our framework will provide the cognitive radio
development community a flexible tool for rapid development
MAC layers in conjunction with other CR implementations
once it is released in the future.
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