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}WARP can 
do them all
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Our Focus: Medium Access Control
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• Why?

• Many interesting research problems: mesh 
networks, MIMO, cross-layer gains, etc.

• All commercial 802.11 chipsets are closed



Outline

• Overview of Medium Access Control 

• Design Realization

• WARPMAC Framework

• Detailed Example

• Lab Exercises



Medium Access 
Control Overview
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Random Backoffs

• PROBLEM: 
Retransmissions can 
collide ad infinitum!

• SOLUTION: Wait a 
random amount of time 
before a retransmit
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Contention Window
increases over time



Other Important 
Details

• Carrier Sense Multiple Access (CSMA)

• Listen to the medium before sending

• Request to Send / Clear to Send (RTS/CTS)

• “Reserve” the medium with a short 
packet before sending a long one



Design Realization
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• Program high-level 
MAC behavior 
independent of 
hardware

• Use the 
WARPMAC 
framework to 
stitch the MAC to 
hardware
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Design Realization

• “Driver” analogy is not 
entirely accurate

• No way to “lock” the 
framework and have it 
support all possible 
future MAC layers

WARPMAC

Framework

Solution: WARPMAC must grow with new algorithms
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Current Offering:

• Custom SISO & MIMO 
OFDM Transceivers

• Flexible data rate 
starting at 15Mbps

• Hardware CRC

• Hardware CSMA
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In General:

• SISO/MIMO, wide/
narrow band are all 
possible
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PHY Driver:

• Configure constellation 
size

• Thesholds in packet 
detection, automatic gain 
control, cross-
correlation in receiver

• “Start” and “Stop” the 
PHY
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Radio Controller Driver:

• Set center frequency

• Switch from Rx to Tx mode 
and vice versa
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Low-Level

Functions
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Functions• Wraps driver calls for another 
layer of abstraction

• For example: 

warpmac_sendOfdm(myPacket)

puts radio into transmit mode, 
loads payload into PHY, begins 
transmit
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Interrupt Handling:

• Register functions to be called 
upon:

- Reception of “Good” 
Packets

- Reception of “Bad Packets”

- Expiration of a timer
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Timer Control

• Start a count down for a 
certain number a clock 
cycles

• User-registered handler 
will be called upon 
expiration 
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• All the functions 

necessary to implement 
the ALOHA protocol

• For example, timer 
control function now 
abstracted to implement 
binary exponential 
backoff
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Implementing Novel 
MACs:

• “Level” of WARPMAC to 
use is MAC dependent

• New PHYs, MACs, and 
lower-level functions will 
be added to the WARP 
repository:

http://warp.rice.edu/trac

http://warp.rice.edu/trac
http://warp.rice.edu/trac


An example: ALOHA
• Simplest MAC

• Serves as a foundation for a large class of 
other random access protocols

• The algorithm is simple:
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An example: ALOHA
• Simplest MAC

• Serves as a foundation for a large class of 
other random access protocols

• The algorithm is simple:

Packet to send? Just send it

Received a packet? Send an ACK

Received no ACK? Backoff and resend
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Implicit Hardware Requirement:
a PHY transmitter
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a PHY receiver
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Implicit Hardware Requirement:
a timer
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Detailed Example
CSMA



Experimental Wireless

Ethernet



• Launches the Xilinx 
kernel

• Kernel will launch the 
thread specified in 
Software Platform 
Settings in XPS

• For this project, that 
thread is “myMac_main”





• Reads the value from 
the dip switch on the 
FPGA board for use as 
identification

• This function also 
displays the value on 
the seven-segment 
displays



• Defines an arbitrary 
address, based on the 
node ID

• Specifies a crude 
“routing table” to allow 
nodes to communicate 
with one another using 
only the node IDs



• Initializes the framework

• Initializes PHY, radio, AGC, 
packet detection, interrupts, 
etc.

• Sets specific parameters

• 4 resends

• Maximum contention 
window of 4 * (Slot-time)

• 9 usec Slot-time

• 400 usec timeout

• Enables sequencing to reduce 
packet duplicates



• Sets handlers to be called on 
certain events:

• Packets that pass checksum

• Packets that fail checksum

• Timer expiration

• Sets specific parameters

• Sets the channel of operation

• Enables SISO operation of 
the MIMO core (MIMO is 
still in development)

• Enables hardware carrier-
sensing



• Loop forever, polling 
ethernet when packet has 
been freed

• isNew specifies whether 
or not the packet is still 
undergoing 
retransmissions

• At this point, we are in the 
“idle” state, ready to process 
a number of cases



Case 1: 
Packet received from Ethernet



• Allocates memory in the 
frame where the Ethernet 
payload should be copied

• Fills in header information

• Type is marked as data

• Destination address is 
hardcoded to ID to 0 if 
node is 1, and vice versa



• If the medium is idle,

• send the packet over 
OFDM

• enter a timeout

• If the medium is busy,

• enter a backoff



Case 2: 
“Bad” packet received from 

OFDM



• If we receive a packet 
that fails checksum

• Blink the bottom 
LEDs

• This way we can have a 
visualization of channel 
quality



Case 3: 
“Good” data packet received 

from OFDM



• Blink the top LEDs

• If destination address is 
equal to my source 
address

• Create an 
acknowledgment and 
send it

• Allocate space for 
the payload, copy the 
payload, send it over 
Ethernet, and free 
the allocated space



Case 4: 
“Good” acknowledgment 

packet received from OFDM



• Blink the top LEDs

• If destination address is 
equal to my source 
address

• If a timeout is 
currently running 
(i.e., the node is 
waiting on an ACK)

• Stop the timer

• Free the 
transmitted packet 
from further 
retransmits

• Wait for the other 
node to get ready



Case 5: 
Timeout timer expires



• Increment the 
resend field of the 
packet

• Enter a backoff



Case 6: 
Backoff timer expires



• If the medium is 
free

• Send it over 
OFDM

• Enter a timeout

• Otherwise, start 
another timeout



Labwork
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lemmingMac Lab
Lab 6: lemmingMac

YES

NO

NONO

YESYES

Idle

Packet from 

Ethernet?

Packet from 

OFDM?

Send data to 

known TX via 

OFDM

Addressed to me

or broadcast?

NO

Send data to 

ethernet

Send ACK to 

known TX via 

OFDM

YES

FOLLOW? Switch Channel

Figure 4: State diagram for frequency-hopping, LemmingMAC
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