
Networking on WARP
Chris Hunter

Rice University

WARP Workshop
March 23, 2007

warp.rice.edu



Some Perspective - The 
OSI Model

Source: http://upload.wikimedia.org/wikipedia/en/f/ff/Osi_model_trad.jpg



Some Perspective - The 
OSI Model

Source: http://upload.wikimedia.org/wikipedia/en/f/ff/Osi_model_trad.jpg

}WARP can 
do them all



The OSI Model

Source: http://upload.wikimedia.org/wikipedia/en/f/ff/Osi_model_trad.jpg



The OSI Model

Source: http://upload.wikimedia.org/wikipedia/en/f/ff/Osi_model_trad.jpg

Our Focus: Medium Access Control



The OSI Model

Source: http://upload.wikimedia.org/wikipedia/en/f/ff/Osi_model_trad.jpg

• Why?

• Many interesting research problems: mesh 
networks, MIMO, cross-layer gains, etc.

• All commercial 802.11 chipsets are closed



Outline

• Overview of Medium Access Control 

• Design Realization

• WARPMAC Framework

• Detailed Example

• Lab Exercises



Medium Access 
Control Overview



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?
Data



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?
D

ata



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?
Data

D
ata



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?
Data

Data



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

XData

Data



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

XData

Data

Received a jumbled 
packet... infer a packet 
collision



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

X

What if we ACK every
transmit, and 
retransmit when we 
receive no ACK?

Data

Data

Received a jumbled 
packet... infer a packet 
collision



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?
Data



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?
ACK



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?
D

ata



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?
A

C
K



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?
D

ata
Data



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?
ACK

A
C

K



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?
Data

Data



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

XData

Data



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?

ACK



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?
Retransmit



User 

3

User 

2User 

1

User 

5

User 

4

User 

6

What is a MAC?
ACK



Random Backoffs

• PROBLEM: 
Retransmissions can 
collide ad infinitum!

• SOLUTION: Wait a 
random amount of time 
before a retransmit

0 1 2 3 4 5

8

16

24

32

40

Contention Window
increases over time



Other Important 
Details

• Carrier Sense Multiple Access (CSMA)

• Listen to the medium before sending

• Request to Send / Clear to Send (RTS/CTS)

• “Reserve” the medium with a short 
packet before sending a long one



Design Realization



Hardware Agnostic
State Machine

WARP
Hardware

WARPMAC

Framework

1

2

3

Design Realization

• Program high-level 
MAC behavior 
independent of 
hardware

• Use the 
WARPMAC 
framework to 
stitch the MAC to 
hardware



Hardware Agnostic
State Machine

WARP
Hardware

WARPMAC

Framework

1

2

3

Design Realization

• “Driver” analogy is not 
entirely accurate

• No way to “lock” the 
framework and have it 
support all possible 
future MAC layers

WARPMAC

Framework



Hardware Agnostic
State Machine

WARP
Hardware

WARPMAC

Framework

1

2

3

Design Realization

• “Driver” analogy is not 
entirely accurate

• No way to “lock” the 
framework and have it 
support all possible 
future MAC layers

WARPMAC

Framework

Solution: WARPMAC must grow with new algorithms



WARPMAC 
Framework



PHY

Drivers

Low-Level

Functions

High-Level

Functions

WARPMAC

FPGA Fabric

PowerPC



PHY

Drivers

Low-Level

Functions

High-Level

Functions

WARPMAC

PHY

Drivers

Low-Level

Functions

High-Level

Functions
Current Offering:

• Custom SISO & MIMO 
OFDM Transceivers

• Flexible data rate 
starting at 15Mbps

• Hardware CRC

• Hardware CSMA



PHY

Drivers

Low-Level

Functions

High-Level

Functions

WARPMAC

PHY

Drivers

Low-Level

Functions

High-Level

Functions

In General:

• SISO/MIMO, wide/
narrow band are all 
possible



PHY

Drivers

Low-Level

Functions

High-Level

Functions

WARPMAC

PHY

Drivers

Low-Level

Functions

High-Level

Functions

PHY Driver:

• Configure constellation 
size

• Thesholds in packet 
detection, automatic gain 
control, cross-
correlation in receiver

• “Start” and “Stop” the 
PHY



PHY

Drivers

Low-Level

Functions

High-Level

Functions

WARPMAC

PHY

Drivers

Low-Level

Functions

High-Level

Functions

Radio Controller Driver:

• Set center frequency

• Switch from Rx to Tx mode 
and vice versa



PHY

Drivers

Low-Level

Functions

High-Level

Functions

WARPMAC

PHY

Drivers

Low-Level

Functions

High-Level

Functions• Wraps driver calls for another 
layer of abstraction

• For example: 

warpmac_sendOfdm(myPacket)

puts radio into transmit mode, 
loads payload into PHY, begins 
transmit



PHY

Drivers

Low-Level

Functions

High-Level

Functions

WARPMAC

PHY

Drivers

Low-Level

Functions

High-Level

Functions

Interrupt Handling:

• Register functions to be called 
upon:

- Reception of “Good” 
Packets

- Reception of “Bad Packets”

- Expiration of a timer



PHY

Drivers

Low-Level

Functions

High-Level

Functions

WARPMAC

PHY

Drivers

Low-Level

Functions

High-Level

Functions

Timer Control

• Start a count down for a 
certain number a clock 
cycles

• User-registered handler 
will be called upon 
expiration 



PHY

Drivers

Low-Level

Functions

High-Level

Functions

WARPMAC

PHY

Drivers

Low-Level

Functions

High-Level

Functions
• All the functions 

necessary to implement 
the ALOHA protocol

• For example, timer 
control function now 
abstracted to implement 
binary exponential 
backoff



PHY

Drivers

Low-Level

Functions

High-Level

Functions

WARPMAC
Implementing Novel 
MACs:

• “Level” of WARPMAC to 
use is MAC dependent

• New PHYs, MACs, and 
lower-level functions will 
be added to the WARP 
repository:

http://warp.rice.edu/trac

http://warp.rice.edu/trac
http://warp.rice.edu/trac


An example: ALOHA
• Simplest MAC

• Serves as a foundation for a large class of 
other random access protocols

• The algorithm is simple:



An example: ALOHA
• Simplest MAC

• Serves as a foundation for a large class of 
other random access protocols

• The algorithm is simple:

Packet to send? Just send it



An example: ALOHA
• Simplest MAC

• Serves as a foundation for a large class of 
other random access protocols

• The algorithm is simple:

Packet to send? Just send it

Received a packet? Send an ACK



An example: ALOHA
• Simplest MAC

• Serves as a foundation for a large class of 
other random access protocols

• The algorithm is simple:

Packet to send? Just send it

Received a packet? Send an ACK

Received no ACK? Backoff and resend



Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

An example: ALOHA



Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

An example: ALOHA



Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

An example: ALOHA

Implicit Hardware Requirement:
a PHY transmitter



Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

An example: ALOHA



Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

An example: ALOHA

Implicit Hardware Requirement:
a PHY receiver



Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

An example: ALOHA



Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

An example: ALOHA

Implicit Hardware Requirement:
a timer



An example: ALOHA
Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States



Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

Hardware Requirements



PowerPC

Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

Hardware Requirements



PowerPC

Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

Hardware Requirements

PHY
Transmitter

PHY
Receiver

Hardware
Timer

Ethernet



PowerPC

Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

Hardware Requirements

PHY
Transmitter

PHY
Receiver

Hardware
Timer

Ethernet

Interrupt Controller



Hardware Platform



PowerPC

Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

PHY

Transmitter

PHY

Receiver

Hardware

Timer

Ethernet

Interrupt Controller

Hardware Platform



PowerPC

Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

PHY

Transmitter

PHY

Receiver

Hardware

Timer

Ethernet

Interrupt Controller

Hardware Platform

Radio 
Controller

Packet 
Detection

Automatic 
Gain 

Control



PowerPC

Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

PHY

Transmitter

PHY

Receiver

Hardware

Timer

Ethernet

Interrupt Controller

Hardware Platform

Radio 
Controller

Packet 
Detection

Automatic 
Gain 

Control

Push-
buttons

LEDs

RS232
Serial



PowerPC

Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

PHY

Transmitter

PHY

Receiver

Hardware

Timer

Ethernet

Interrupt Controller

Hardware Platform

Radio 
Controller

Packet 
Detection

Automatic 
Gain 

Control

Push-
buttons

LEDs

RS232
Serial

PowerP
Control Code



PowerPC

Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

PHY

Transmitter

PHY

Receiver

Hardware

Timer

Ethernet

Interrupt Controller

Hardware Platform

Radio 
Controller

Packet 
Detection

Automatic 
Gain 

Control

Push-
buttons

LEDs

RS232
Serial

PowerP
Control Code

Processor Busses (OPB/PLB)



PowerP

Idle

Transmit 

Packet

Packet to send?
Received a 

packet?
NONO

Passed CRC?NO

YES

Addressed to me?Enter Timeout NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

PHY
Transmitt

PHY
Receive

Hardwar
e

Etherne

Interrupt Controller

Radio 
Controller

Packet 
Detection

Automatic 
Gain 

Control

Push-
buttons

LEDs

RS232
Serial

PowerP
Control Code

Processor Busses (OPB/PLB)

One extreme: Hide the Hard Stuff

Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

WARPMAC



PowerP

Idle

Transmit 

Packet

Packet to send?
Received a 

packet?
NONO

Passed CRC?NO

YES

Addressed to me?Enter Timeout NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

PHY
Transmitter

PHY
Receiver

Hardware
Timer

Ethernet

Interrupt Controller

Radio 
Controller

Packet 
Detection

Automatic 
Gain 

Control

Push-
buttons

LEDs

RS232
Serial

PowerP
Control Code

Processor Busses (OPB/PLB)

Somewhere in between

Idle

Transmit 

Packet

Packet to send?
Received a 

packet?

NONO

Passed CRC?
NO

YES

Addressed to me?Enter Timeout
NO

YES

Type of Packet

YES

YES

Clear Timeout

YES

Timer Expired?
NO

Type of Timer

YES

Transmit 

ACK

Data ACK

Enter Backoff
Re-

transmit

TimeoutBackoff

Transmit States

Receive States

Timer States

WARPMAC



Detailed Example
CSMA



Experimental Wireless

Ethernet



• Launches the Xilinx 
kernel

• Kernel will launch the 
thread specified in 
Software Platform 
Settings in XPS

• For this project, that 
thread is “myMac_main”





• Reads the value from 
the dip switch on the 
FPGA board for use as 
identification

• This function also 
displays the value on 
the seven-segment 
displays



• Defines an arbitrary 
address, based on the 
node ID

• Specifies a crude 
“routing table” to allow 
nodes to communicate 
with one another using 
only the node IDs



• Initializes the framework

• Initializes PHY, radio, AGC, 
packet detection, interrupts, 
etc.

• Sets specific parameters

• 4 resends

• Maximum contention 
window of 4 * (Slot-time)

• 9 usec Slot-time

• 400 usec timeout

• Enables sequencing to reduce 
packet duplicates



• Sets handlers to be called on 
certain events:

• Packets that pass checksum

• Packets that fail checksum

• Timer expiration

• Sets specific parameters

• Sets the channel of operation

• Enables SISO operation of 
the MIMO core (MIMO is 
still in development)

• Enables hardware carrier-
sensing



• Loop forever, polling 
ethernet when packet has 
been freed

• isNew specifies whether 
or not the packet is still 
undergoing 
retransmissions

• At this point, we are in the 
“idle” state, ready to process 
a number of cases



Case 1: 
Packet received from Ethernet



• Allocates memory in the 
frame where the Ethernet 
payload should be copied

• Fills in header information

• Type is marked as data

• Destination address is 
hardcoded to ID to 0 if 
node is 1, and vice versa



• If the medium is idle,

• send the packet over 
OFDM

• enter a timeout

• If the medium is busy,

• enter a backoff



Case 2: 
“Bad” packet received from 

OFDM



• If we receive a packet 
that fails checksum

• Blink the bottom 
LEDs

• This way we can have a 
visualization of channel 
quality



Case 3: 
“Good” data packet received 

from OFDM



• Blink the top LEDs

• If destination address is 
equal to my source 
address

• Create an 
acknowledgment and 
send it

• Allocate space for 
the payload, copy the 
payload, send it over 
Ethernet, and free 
the allocated space



Case 4: 
“Good” acknowledgment 

packet received from OFDM



• Blink the top LEDs

• If destination address is 
equal to my source 
address

• If a timeout is 
currently running 
(i.e., the node is 
waiting on an ACK)

• Stop the timer

• Free the 
transmitted packet 
from further 
retransmits

• Wait for the other 
node to get ready



Case 5: 
Timeout timer expires



• Increment the 
resend field of the 
packet

• Enter a backoff



Case 6: 
Backoff timer expires



• If the medium is 
free

• Send it over 
OFDM

• Enter a timeout

• Otherwise, start 
another timeout



Labwork



NONO

YESYES

Idle

Packet from 

Ethernet?

Packet from 

OFDM?

Send to OFDM Send to Ethernet

noMac



uniMac

Node 0 192.168.1.20

Node 1 192.168.1.1

Node 2 192.168.1.2

Node 3 192.168.1.3

Node 4 192.168.1.4

Node 16 192.168.1.16

Node 5 192.168.1.5

..
.

UDP Audio



uniMac Lab

Node 5

Least Significant Bit (LSB)

Most Significant Bit (MSB)



NONO

YESYES

Idle

Packet from 

Ethernet?

Packet from 

OFDM?

Send data to 

known TX via 

OFDM

Addressed to me?
NO

Send data to 

ethernet

Send ACK to 

known TX via 

OFDM

uniMac Lab



lemmingMac Lab



lemmingMac Lab
Lab 6: lemmingMac

YES

NO

NONO

YESYES

Idle

Packet from 

Ethernet?

Packet from 

OFDM?

Send data to 

known TX via 

OFDM

Addressed to me

or broadcast?

NO

Send data to 

ethernet

Send ACK to 

known TX via 

OFDM

YES

FOLLOW? Switch Channel

Figure 4: State diagram for frequency-hopping, LemmingMAC

ver. 1.1: 22-Mar-2007 http://warp.rice.edu 3


